Metamath Proof Explorer


Theorem cshwn

Description: A word cyclically shifted by its length is the word itself. (Contributed by AV, 16-May-2018) (Revised by AV, 20-May-2018) (Revised by AV, 26-Oct-2018)

Ref Expression
Assertion cshwn WWordVWcyclShiftW=W

Proof

Step Hyp Ref Expression
1 0csh0 cyclShiftW=
2 oveq1 =WcyclShiftW=WcyclShiftW
3 id =W=W
4 1 2 3 3eqtr3a =WWcyclShiftW=W
5 4 a1d =WWWordVWcyclShiftW=W
6 lencl WWordVW0
7 6 nn0zd WWordVW
8 cshwmodn WWordVWWcyclShiftW=WcyclShiftWmodW
9 7 8 mpdan WWordVWcyclShiftW=WcyclShiftWmodW
10 9 adantl WWWordVWcyclShiftW=WcyclShiftWmodW
11 necom WW
12 lennncl WWordVWW
13 11 12 sylan2b WWordVWW
14 13 nnrpd WWordVWW+
15 14 ancoms WWWordVW+
16 modid0 W+WmodW=0
17 15 16 syl WWWordVWmodW=0
18 17 oveq2d WWWordVWcyclShiftWmodW=WcyclShift0
19 cshw0 WWordVWcyclShift0=W
20 19 adantl WWWordVWcyclShift0=W
21 10 18 20 3eqtrd WWWordVWcyclShiftW=W
22 21 ex WWWordVWcyclShiftW=W
23 5 22 pm2.61ine WWordVWcyclShiftW=W