| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwrepswhash1.m |  |-  M = { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } | 
						
							| 2 |  | df-rab |  |-  { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } = { w | ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) } | 
						
							| 3 |  | eqcom |  |-  ( ( W cyclShift n ) = w <-> w = ( W cyclShift n ) ) | 
						
							| 4 | 3 | biimpi |  |-  ( ( W cyclShift n ) = w -> w = ( W cyclShift n ) ) | 
						
							| 5 | 4 | reximi |  |-  ( E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w -> E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) -> E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) ) | 
						
							| 7 |  | cshwcl |  |-  ( W e. Word V -> ( W cyclShift n ) e. Word V ) | 
						
							| 8 | 7 | adantr |  |-  ( ( W e. Word V /\ n e. ( 0 ..^ ( # ` W ) ) ) -> ( W cyclShift n ) e. Word V ) | 
						
							| 9 |  | eleq1 |  |-  ( w = ( W cyclShift n ) -> ( w e. Word V <-> ( W cyclShift n ) e. Word V ) ) | 
						
							| 10 | 8 9 | syl5ibrcom |  |-  ( ( W e. Word V /\ n e. ( 0 ..^ ( # ` W ) ) ) -> ( w = ( W cyclShift n ) -> w e. Word V ) ) | 
						
							| 11 | 10 | rexlimdva |  |-  ( W e. Word V -> ( E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) -> w e. Word V ) ) | 
						
							| 12 |  | eqcom |  |-  ( w = ( W cyclShift n ) <-> ( W cyclShift n ) = w ) | 
						
							| 13 | 12 | biimpi |  |-  ( w = ( W cyclShift n ) -> ( W cyclShift n ) = w ) | 
						
							| 14 | 13 | reximi |  |-  ( E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) -> E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) | 
						
							| 15 | 11 14 | jca2 |  |-  ( W e. Word V -> ( E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) -> ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) ) ) | 
						
							| 16 | 6 15 | impbid2 |  |-  ( W e. Word V -> ( ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) <-> E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) ) ) | 
						
							| 17 |  | velsn |  |-  ( w e. { ( W cyclShift n ) } <-> w = ( W cyclShift n ) ) | 
						
							| 18 | 17 | bicomi |  |-  ( w = ( W cyclShift n ) <-> w e. { ( W cyclShift n ) } ) | 
						
							| 19 | 18 | a1i |  |-  ( W e. Word V -> ( w = ( W cyclShift n ) <-> w e. { ( W cyclShift n ) } ) ) | 
						
							| 20 | 19 | rexbidv |  |-  ( W e. Word V -> ( E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) <-> E. n e. ( 0 ..^ ( # ` W ) ) w e. { ( W cyclShift n ) } ) ) | 
						
							| 21 | 16 20 | bitrd |  |-  ( W e. Word V -> ( ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) <-> E. n e. ( 0 ..^ ( # ` W ) ) w e. { ( W cyclShift n ) } ) ) | 
						
							| 22 | 21 | abbidv |  |-  ( W e. Word V -> { w | ( w e. Word V /\ E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w ) } = { w | E. n e. ( 0 ..^ ( # ` W ) ) w e. { ( W cyclShift n ) } } ) | 
						
							| 23 | 2 22 | eqtrid |  |-  ( W e. Word V -> { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } = { w | E. n e. ( 0 ..^ ( # ` W ) ) w e. { ( W cyclShift n ) } } ) | 
						
							| 24 |  | df-iun |  |-  U_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } = { w | E. n e. ( 0 ..^ ( # ` W ) ) w e. { ( W cyclShift n ) } } | 
						
							| 25 | 23 1 24 | 3eqtr4g |  |-  ( W e. Word V -> M = U_ n e. ( 0 ..^ ( # ` W ) ) { ( W cyclShift n ) } ) |