| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwshash.0 | ⊢ ( 𝜑  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ ) ) | 
						
							| 2 |  | orc | ⊢ ( 𝑛  =  𝑗  →  ( 𝑛  =  𝑗  ∨  ( { ( 𝑊  cyclShift  𝑛 ) }  ∩  { ( 𝑊  cyclShift  𝑗 ) } )  =  ∅ ) ) | 
						
							| 3 | 2 | a1d | ⊢ ( 𝑛  =  𝑗  →  ( ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  ∧  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑛  =  𝑗  ∨  ( { ( 𝑊  cyclShift  𝑛 ) }  ∩  { ( 𝑊  cyclShift  𝑗 ) } )  =  ∅ ) ) ) | 
						
							| 4 |  | simprl | ⊢ ( ( 𝑛  ≠  𝑗  ∧  ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  ∧  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 5 |  | simprrl | ⊢ ( ( 𝑛  ≠  𝑗  ∧  ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  ∧  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 6 |  | simprrr | ⊢ ( ( 𝑛  ≠  𝑗  ∧  ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  ∧  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 7 |  | necom | ⊢ ( 𝑛  ≠  𝑗  ↔  𝑗  ≠  𝑛 ) | 
						
							| 8 | 7 | biimpi | ⊢ ( 𝑛  ≠  𝑗  →  𝑗  ≠  𝑛 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑛  ≠  𝑗  ∧  ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  ∧  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  𝑗  ≠  𝑛 ) | 
						
							| 10 | 1 | cshwshashlem3 | ⊢ ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  →  ( ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ≠  𝑛 )  →  ( 𝑊  cyclShift  𝑛 )  ≠  ( 𝑊  cyclShift  𝑗 ) ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  ∧  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ≠  𝑛 ) )  →  ( 𝑊  cyclShift  𝑛 )  ≠  ( 𝑊  cyclShift  𝑗 ) ) | 
						
							| 12 | 4 5 6 9 11 | syl13anc | ⊢ ( ( 𝑛  ≠  𝑗  ∧  ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  ∧  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( 𝑊  cyclShift  𝑛 )  ≠  ( 𝑊  cyclShift  𝑗 ) ) | 
						
							| 13 |  | disjsn2 | ⊢ ( ( 𝑊  cyclShift  𝑛 )  ≠  ( 𝑊  cyclShift  𝑗 )  →  ( { ( 𝑊  cyclShift  𝑛 ) }  ∩  { ( 𝑊  cyclShift  𝑗 ) } )  =  ∅ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑛  ≠  𝑗  ∧  ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  ∧  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( { ( 𝑊  cyclShift  𝑛 ) }  ∩  { ( 𝑊  cyclShift  𝑗 ) } )  =  ∅ ) | 
						
							| 15 | 14 | olcd | ⊢ ( ( 𝑛  ≠  𝑗  ∧  ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  ∧  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) )  →  ( 𝑛  =  𝑗  ∨  ( { ( 𝑊  cyclShift  𝑛 ) }  ∩  { ( 𝑊  cyclShift  𝑗 ) } )  =  ∅ ) ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝑛  ≠  𝑗  →  ( ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  ∧  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑛  =  𝑗  ∨  ( { ( 𝑊  cyclShift  𝑛 ) }  ∩  { ( 𝑊  cyclShift  𝑗 ) } )  =  ∅ ) ) ) | 
						
							| 17 | 3 16 | pm2.61ine | ⊢ ( ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  ∧  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑛  =  𝑗  ∨  ( { ( 𝑊  cyclShift  𝑛 ) }  ∩  { ( 𝑊  cyclShift  𝑗 ) } )  =  ∅ ) ) | 
						
							| 18 | 17 | ralrimivva | ⊢ ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  →  ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑛  =  𝑗  ∨  ( { ( 𝑊  cyclShift  𝑛 ) }  ∩  { ( 𝑊  cyclShift  𝑗 ) } )  =  ∅ ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝑊  cyclShift  𝑛 )  =  ( 𝑊  cyclShift  𝑗 ) ) | 
						
							| 20 | 19 | sneqd | ⊢ ( 𝑛  =  𝑗  →  { ( 𝑊  cyclShift  𝑛 ) }  =  { ( 𝑊  cyclShift  𝑗 ) } ) | 
						
							| 21 | 20 | disjor | ⊢ ( Disj  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) }  ↔  ∀ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑛  =  𝑗  ∨  ( { ( 𝑊  cyclShift  𝑛 ) }  ∩  { ( 𝑊  cyclShift  𝑗 ) } )  =  ∅ ) ) | 
						
							| 22 | 18 21 | sylibr | ⊢ ( ( 𝜑  ∧  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  ≠  ( 𝑊 ‘ 0 ) )  →  Disj  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) { ( 𝑊  cyclShift  𝑛 ) } ) |