| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 |  |-  ( y = x -> ( y = ( W cyclShift n ) <-> x = ( W cyclShift n ) ) ) | 
						
							| 2 | 1 | rexbidv |  |-  ( y = x -> ( E. n e. ( 0 ... N ) y = ( W cyclShift n ) <-> E. n e. ( 0 ... N ) x = ( W cyclShift n ) ) ) | 
						
							| 3 | 2 | cbvrabv |  |-  { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } = { x e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) x = ( W cyclShift n ) } | 
						
							| 4 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 5 | 4 | clwwlknwrd |  |-  ( w e. ( N ClWWalksN G ) -> w e. Word ( Vtx ` G ) ) | 
						
							| 6 | 5 | ad2antrl |  |-  ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> w e. Word ( Vtx ` G ) ) | 
						
							| 7 |  | simprr |  |-  ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) | 
						
							| 8 | 6 7 | jca |  |-  ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) | 
						
							| 9 |  | simprr |  |-  ( ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) /\ ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) ) -> W e. ( N ClWWalksN G ) ) | 
						
							| 10 |  | simpllr |  |-  ( ( ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) /\ ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) ) /\ w = ( W cyclShift n ) ) -> n e. ( 0 ... N ) ) | 
						
							| 11 |  | clwwnisshclwwsn |  |-  ( ( W e. ( N ClWWalksN G ) /\ n e. ( 0 ... N ) ) -> ( W cyclShift n ) e. ( N ClWWalksN G ) ) | 
						
							| 12 | 9 10 11 | syl2an2r |  |-  ( ( ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) /\ ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) ) /\ w = ( W cyclShift n ) ) -> ( W cyclShift n ) e. ( N ClWWalksN G ) ) | 
						
							| 13 |  | eleq1 |  |-  ( w = ( W cyclShift n ) -> ( w e. ( N ClWWalksN G ) <-> ( W cyclShift n ) e. ( N ClWWalksN G ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) /\ ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) ) /\ w = ( W cyclShift n ) ) -> ( w e. ( N ClWWalksN G ) <-> ( W cyclShift n ) e. ( N ClWWalksN G ) ) ) | 
						
							| 15 | 12 14 | mpbird |  |-  ( ( ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) /\ ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) ) /\ w = ( W cyclShift n ) ) -> w e. ( N ClWWalksN G ) ) | 
						
							| 16 | 15 | exp31 |  |-  ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) -> ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> ( w = ( W cyclShift n ) -> w e. ( N ClWWalksN G ) ) ) ) | 
						
							| 17 | 16 | com23 |  |-  ( ( w e. Word ( Vtx ` G ) /\ n e. ( 0 ... N ) ) -> ( w = ( W cyclShift n ) -> ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> w e. ( N ClWWalksN G ) ) ) ) | 
						
							| 18 | 17 | rexlimdva |  |-  ( w e. Word ( Vtx ` G ) -> ( E. n e. ( 0 ... N ) w = ( W cyclShift n ) -> ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> w e. ( N ClWWalksN G ) ) ) ) | 
						
							| 19 | 18 | imp |  |-  ( ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) -> ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> w e. ( N ClWWalksN G ) ) ) | 
						
							| 20 | 19 | impcom |  |-  ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> w e. ( N ClWWalksN G ) ) | 
						
							| 21 |  | simprr |  |-  ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) | 
						
							| 22 | 20 21 | jca |  |-  ( ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) /\ ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) -> ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) | 
						
							| 23 | 8 22 | impbida |  |-  ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> ( ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) <-> ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) ) | 
						
							| 24 |  | eqeq1 |  |-  ( x = w -> ( x = ( W cyclShift n ) <-> w = ( W cyclShift n ) ) ) | 
						
							| 25 | 24 | rexbidv |  |-  ( x = w -> ( E. n e. ( 0 ... N ) x = ( W cyclShift n ) <-> E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) | 
						
							| 26 | 25 | elrab |  |-  ( w e. { x e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) x = ( W cyclShift n ) } <-> ( w e. ( N ClWWalksN G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) | 
						
							| 27 |  | eqeq1 |  |-  ( y = w -> ( y = ( W cyclShift n ) <-> w = ( W cyclShift n ) ) ) | 
						
							| 28 | 27 | rexbidv |  |-  ( y = w -> ( E. n e. ( 0 ... N ) y = ( W cyclShift n ) <-> E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) | 
						
							| 29 | 28 | elrab |  |-  ( w e. { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } <-> ( w e. Word ( Vtx ` G ) /\ E. n e. ( 0 ... N ) w = ( W cyclShift n ) ) ) | 
						
							| 30 | 23 26 29 | 3bitr4g |  |-  ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> ( w e. { x e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) x = ( W cyclShift n ) } <-> w e. { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } ) ) | 
						
							| 31 | 30 | eqrdv |  |-  ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> { x e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) x = ( W cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } ) | 
						
							| 32 | 3 31 | eqtrid |  |-  ( ( N e. NN0 /\ W e. ( N ClWWalksN G ) ) -> { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( W cyclShift n ) } ) |