| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlkclwwlkn |  |-  ( W e. ( N ClWWalksN G ) -> W e. ( ClWWalks ` G ) ) | 
						
							| 2 |  | clwwlknlen |  |-  ( W e. ( N ClWWalksN G ) -> ( # ` W ) = N ) | 
						
							| 3 | 2 | eqcomd |  |-  ( W e. ( N ClWWalksN G ) -> N = ( # ` W ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( W e. ( N ClWWalksN G ) -> ( 0 ... N ) = ( 0 ... ( # ` W ) ) ) | 
						
							| 5 | 4 | eleq2d |  |-  ( W e. ( N ClWWalksN G ) -> ( M e. ( 0 ... N ) <-> M e. ( 0 ... ( # ` W ) ) ) ) | 
						
							| 6 | 5 | biimpa |  |-  ( ( W e. ( N ClWWalksN G ) /\ M e. ( 0 ... N ) ) -> M e. ( 0 ... ( # ` W ) ) ) | 
						
							| 7 |  | clwwisshclwwsn |  |-  ( ( W e. ( ClWWalks ` G ) /\ M e. ( 0 ... ( # ` W ) ) ) -> ( W cyclShift M ) e. ( ClWWalks ` G ) ) | 
						
							| 8 | 1 6 7 | syl2an2r |  |-  ( ( W e. ( N ClWWalksN G ) /\ M e. ( 0 ... N ) ) -> ( W cyclShift M ) e. ( ClWWalks ` G ) ) | 
						
							| 9 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 10 | 9 | clwwlknwrd |  |-  ( W e. ( N ClWWalksN G ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 11 |  | elfzelz |  |-  ( M e. ( 0 ... N ) -> M e. ZZ ) | 
						
							| 12 |  | cshwlen |  |-  ( ( W e. Word ( Vtx ` G ) /\ M e. ZZ ) -> ( # ` ( W cyclShift M ) ) = ( # ` W ) ) | 
						
							| 13 | 10 11 12 | syl2an |  |-  ( ( W e. ( N ClWWalksN G ) /\ M e. ( 0 ... N ) ) -> ( # ` ( W cyclShift M ) ) = ( # ` W ) ) | 
						
							| 14 | 2 | adantr |  |-  ( ( W e. ( N ClWWalksN G ) /\ M e. ( 0 ... N ) ) -> ( # ` W ) = N ) | 
						
							| 15 | 13 14 | eqtrd |  |-  ( ( W e. ( N ClWWalksN G ) /\ M e. ( 0 ... N ) ) -> ( # ` ( W cyclShift M ) ) = N ) | 
						
							| 16 |  | isclwwlkn |  |-  ( ( W cyclShift M ) e. ( N ClWWalksN G ) <-> ( ( W cyclShift M ) e. ( ClWWalks ` G ) /\ ( # ` ( W cyclShift M ) ) = N ) ) | 
						
							| 17 | 8 15 16 | sylanbrc |  |-  ( ( W e. ( N ClWWalksN G ) /\ M e. ( 0 ... N ) ) -> ( W cyclShift M ) e. ( N ClWWalksN G ) ) |