Metamath Proof Explorer


Theorem clwwnisshclwwsn

Description: Cyclically shifting a closed walk as word of fixed length results in a closed walk as word of the same length (in an undirected graph). (Contributed by Alexander van der Vekens, 10-Jun-2018) (Revised by AV, 29-Apr-2021) (Proof shortened by AV, 22-Mar-2022)

Ref Expression
Assertion clwwnisshclwwsn W N ClWWalksN G M 0 N W cyclShift M N ClWWalksN G

Proof

Step Hyp Ref Expression
1 clwwlkclwwlkn W N ClWWalksN G W ClWWalks G
2 clwwlknlen W N ClWWalksN G W = N
3 2 eqcomd W N ClWWalksN G N = W
4 3 oveq2d W N ClWWalksN G 0 N = 0 W
5 4 eleq2d W N ClWWalksN G M 0 N M 0 W
6 5 biimpa W N ClWWalksN G M 0 N M 0 W
7 clwwisshclwwsn W ClWWalks G M 0 W W cyclShift M ClWWalks G
8 1 6 7 syl2an2r W N ClWWalksN G M 0 N W cyclShift M ClWWalks G
9 eqid Vtx G = Vtx G
10 9 clwwlknwrd W N ClWWalksN G W Word Vtx G
11 elfzelz M 0 N M
12 cshwlen W Word Vtx G M W cyclShift M = W
13 10 11 12 syl2an W N ClWWalksN G M 0 N W cyclShift M = W
14 2 adantr W N ClWWalksN G M 0 N W = N
15 13 14 eqtrd W N ClWWalksN G M 0 N W cyclShift M = N
16 isclwwlkn W cyclShift M N ClWWalksN G W cyclShift M ClWWalks G W cyclShift M = N
17 8 15 16 sylanbrc W N ClWWalksN G M 0 N W cyclShift M N ClWWalksN G