| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlkclwwlkn | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 2 |  | clwwlknlen | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( ♯ ‘ 𝑊 )  =  𝑁 ) | 
						
							| 3 | 2 | eqcomd | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  𝑁  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 0 ... 𝑁 )  =  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑀  ∈  ( 0 ... 𝑁 )  ↔  𝑀  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 6 | 5 | biimpa | ⊢ ( ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑀  ∈  ( 0 ... 𝑁 ) )  →  𝑀  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 7 |  | clwwisshclwwsn | ⊢ ( ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑀  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝑀 )  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 8 | 1 6 7 | syl2an2r | ⊢ ( ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑀  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑊  cyclShift  𝑀 )  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 10 | 9 | clwwlknwrd | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 11 |  | elfzelz | ⊢ ( 𝑀  ∈  ( 0 ... 𝑁 )  →  𝑀  ∈  ℤ ) | 
						
							| 12 |  | cshwlen | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑀  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 13 | 10 11 12 | syl2an | ⊢ ( ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑀  ∈  ( 0 ... 𝑁 ) )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 14 | 2 | adantr | ⊢ ( ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑀  ∈  ( 0 ... 𝑁 ) )  →  ( ♯ ‘ 𝑊 )  =  𝑁 ) | 
						
							| 15 | 13 14 | eqtrd | ⊢ ( ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑀  ∈  ( 0 ... 𝑁 ) )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) )  =  𝑁 ) | 
						
							| 16 |  | isclwwlkn | ⊢ ( ( 𝑊  cyclShift  𝑀 )  ∈  ( 𝑁  ClWWalksN  𝐺 )  ↔  ( ( 𝑊  cyclShift  𝑀 )  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝑊  cyclShift  𝑀 ) )  =  𝑁 ) ) | 
						
							| 17 | 8 15 16 | sylanbrc | ⊢ ( ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑀  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑊  cyclShift  𝑀 )  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) |