| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑊 )  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 2 | clwwlkbp | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ ) ) | 
						
							| 4 | 3 | simp2d | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 5 |  | cshwn | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑊  cyclShift  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝑊  cyclShift  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 8 | 1 7 | sylan9eq | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑊 )  ∧  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊  cyclShift  𝑁 )  =  𝑊 ) | 
						
							| 9 |  | simprl | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑊 )  ∧  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  →  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 10 | 8 9 | eqeltrd | ⊢ ( ( 𝑁  =  ( ♯ ‘ 𝑊 )  ∧  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( ¬  𝑁  =  ( ♯ ‘ 𝑊 )  ∧  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  →  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 12 |  | df-ne | ⊢ ( 𝑁  ≠  ( ♯ ‘ 𝑊 )  ↔  ¬  𝑁  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 13 |  | fzofzim | ⊢ ( ( 𝑁  ≠  ( ♯ ‘ 𝑊 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 14 | 13 | expcom | ⊢ ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( 𝑁  ≠  ( ♯ ‘ 𝑊 )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 15 | 12 14 | biimtrrid | ⊢ ( 𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( ¬  𝑁  =  ( ♯ ‘ 𝑊 )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ¬  𝑁  =  ( ♯ ‘ 𝑊 )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 17 | 16 | impcom | ⊢ ( ( ¬  𝑁  =  ( ♯ ‘ 𝑊 )  ∧  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 18 |  | clwwisshclwws | ⊢ ( ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 19 | 11 17 18 | syl2anc | ⊢ ( ( ¬  𝑁  =  ( ♯ ‘ 𝑊 )  ∧  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 20 | 10 19 | pm2.61ian | ⊢ ( ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) |