| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( N = ( # ` W ) -> ( W cyclShift N ) = ( W cyclShift ( # ` W ) ) ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 2 | clwwlkbp |  |-  ( W e. ( ClWWalks ` G ) -> ( G e. _V /\ W e. Word ( Vtx ` G ) /\ W =/= (/) ) ) | 
						
							| 4 | 3 | simp2d |  |-  ( W e. ( ClWWalks ` G ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 5 |  | cshwn |  |-  ( W e. Word ( Vtx ` G ) -> ( W cyclShift ( # ` W ) ) = W ) | 
						
							| 6 | 4 5 | syl |  |-  ( W e. ( ClWWalks ` G ) -> ( W cyclShift ( # ` W ) ) = W ) | 
						
							| 7 | 6 | adantr |  |-  ( ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W cyclShift ( # ` W ) ) = W ) | 
						
							| 8 | 1 7 | sylan9eq |  |-  ( ( N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> ( W cyclShift N ) = W ) | 
						
							| 9 |  | simprl |  |-  ( ( N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> W e. ( ClWWalks ` G ) ) | 
						
							| 10 | 8 9 | eqeltrd |  |-  ( ( N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) | 
						
							| 11 |  | simprl |  |-  ( ( -. N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> W e. ( ClWWalks ` G ) ) | 
						
							| 12 |  | df-ne |  |-  ( N =/= ( # ` W ) <-> -. N = ( # ` W ) ) | 
						
							| 13 |  | fzofzim |  |-  ( ( N =/= ( # ` W ) /\ N e. ( 0 ... ( # ` W ) ) ) -> N e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 14 | 13 | expcom |  |-  ( N e. ( 0 ... ( # ` W ) ) -> ( N =/= ( # ` W ) -> N e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 15 | 12 14 | biimtrrid |  |-  ( N e. ( 0 ... ( # ` W ) ) -> ( -. N = ( # ` W ) -> N e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( -. N = ( # ` W ) -> N e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 17 | 16 | impcom |  |-  ( ( -. N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> N e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 18 |  | clwwisshclwws |  |-  ( ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) | 
						
							| 19 | 11 17 18 | syl2anc |  |-  ( ( -. N = ( # ` W ) /\ ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) | 
						
							| 20 | 10 19 | pm2.61ian |  |-  ( ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) |