| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 | 1 | clwwlkbp |  |-  ( W e. ( ClWWalks ` G ) -> ( G e. _V /\ W e. Word ( Vtx ` G ) /\ W =/= (/) ) ) | 
						
							| 3 |  | cshw0 |  |-  ( W e. Word ( Vtx ` G ) -> ( W cyclShift 0 ) = W ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( G e. _V /\ W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( W cyclShift 0 ) = W ) | 
						
							| 5 | 4 | eleq1d |  |-  ( ( G e. _V /\ W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( ( W cyclShift 0 ) e. ( ClWWalks ` G ) <-> W e. ( ClWWalks ` G ) ) ) | 
						
							| 6 | 5 | biimprd |  |-  ( ( G e. _V /\ W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( W e. ( ClWWalks ` G ) -> ( W cyclShift 0 ) e. ( ClWWalks ` G ) ) ) | 
						
							| 7 | 2 6 | mpcom |  |-  ( W e. ( ClWWalks ` G ) -> ( W cyclShift 0 ) e. ( ClWWalks ` G ) ) | 
						
							| 8 |  | oveq2 |  |-  ( N = 0 -> ( W cyclShift N ) = ( W cyclShift 0 ) ) | 
						
							| 9 | 8 | eleq1d |  |-  ( N = 0 -> ( ( W cyclShift N ) e. ( ClWWalks ` G ) <-> ( W cyclShift 0 ) e. ( ClWWalks ` G ) ) ) | 
						
							| 10 | 7 9 | syl5ibrcom |  |-  ( W e. ( ClWWalks ` G ) -> ( N = 0 -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( N = 0 -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) ) | 
						
							| 12 |  | fzo1fzo0n0 |  |-  ( N e. ( 1 ..^ ( # ` W ) ) <-> ( N e. ( 0 ..^ ( # ` W ) ) /\ N =/= 0 ) ) | 
						
							| 13 |  | cshwcl |  |-  ( W e. Word ( Vtx ` G ) -> ( W cyclShift N ) e. Word ( Vtx ` G ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( W cyclShift N ) e. Word ( Vtx ` G ) ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( W cyclShift N ) e. Word ( Vtx ` G ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift N ) e. Word ( Vtx ` G ) ) | 
						
							| 17 |  | simpl |  |-  ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 18 |  | elfzoelz |  |-  ( N e. ( 1 ..^ ( # ` W ) ) -> N e. ZZ ) | 
						
							| 19 |  | cshwlen |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ZZ ) -> ( # ` ( W cyclShift N ) ) = ( # ` W ) ) | 
						
							| 20 | 17 18 19 | syl2an |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( # ` ( W cyclShift N ) ) = ( # ` W ) ) | 
						
							| 21 |  | hasheq0 |  |-  ( W e. Word ( Vtx ` G ) -> ( ( # ` W ) = 0 <-> W = (/) ) ) | 
						
							| 22 | 21 | bicomd |  |-  ( W e. Word ( Vtx ` G ) -> ( W = (/) <-> ( # ` W ) = 0 ) ) | 
						
							| 23 | 22 | necon3bid |  |-  ( W e. Word ( Vtx ` G ) -> ( W =/= (/) <-> ( # ` W ) =/= 0 ) ) | 
						
							| 24 | 23 | biimpa |  |-  ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( # ` W ) =/= 0 ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( # ` W ) =/= 0 ) | 
						
							| 26 | 20 25 | eqnetrd |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( # ` ( W cyclShift N ) ) =/= 0 ) | 
						
							| 27 | 14 | adantr |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift N ) e. Word ( Vtx ` G ) ) | 
						
							| 28 |  | hasheq0 |  |-  ( ( W cyclShift N ) e. Word ( Vtx ` G ) -> ( ( # ` ( W cyclShift N ) ) = 0 <-> ( W cyclShift N ) = (/) ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( ( # ` ( W cyclShift N ) ) = 0 <-> ( W cyclShift N ) = (/) ) ) | 
						
							| 30 | 29 | necon3bid |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( ( # ` ( W cyclShift N ) ) =/= 0 <-> ( W cyclShift N ) =/= (/) ) ) | 
						
							| 31 | 26 30 | mpbid |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift N ) =/= (/) ) | 
						
							| 32 | 31 | 3ad2antl1 |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( W cyclShift N ) =/= (/) ) | 
						
							| 33 | 16 32 | jca |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) e. Word ( Vtx ` G ) /\ ( W cyclShift N ) =/= (/) ) ) | 
						
							| 34 | 17 | 3ad2ant1 |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> W e. Word ( Vtx ` G ) ) | 
						
							| 35 | 34 | anim1i |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) ) | 
						
							| 36 |  | 3simpc |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 38 |  | clwwisshclwwslem |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> A. j e. ( 0 ..^ ( ( # ` ( W cyclShift N ) ) - 1 ) ) { ( ( W cyclShift N ) ` j ) , ( ( W cyclShift N ) ` ( j + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 39 | 35 37 38 | sylc |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> A. j e. ( 0 ..^ ( ( # ` ( W cyclShift N ) ) - 1 ) ) { ( ( W cyclShift N ) ` j ) , ( ( W cyclShift N ) ` ( j + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 40 |  | elfzofz |  |-  ( N e. ( 1 ..^ ( # ` W ) ) -> N e. ( 1 ... ( # ` W ) ) ) | 
						
							| 41 |  | lswcshw |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` W ) ) ) -> ( lastS ` ( W cyclShift N ) ) = ( W ` ( N - 1 ) ) ) | 
						
							| 42 | 40 41 | sylan2 |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( lastS ` ( W cyclShift N ) ) = ( W ` ( N - 1 ) ) ) | 
						
							| 43 |  | fzo0ss1 |  |-  ( 1 ..^ ( # ` W ) ) C_ ( 0 ..^ ( # ` W ) ) | 
						
							| 44 | 43 | sseli |  |-  ( N e. ( 1 ..^ ( # ` W ) ) -> N e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 45 |  | cshwidx0 |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) | 
						
							| 46 | 44 45 | sylan2 |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) | 
						
							| 47 | 42 46 | preq12d |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> { ( lastS ` ( W cyclShift N ) ) , ( ( W cyclShift N ) ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` N ) } ) | 
						
							| 48 | 47 | ex |  |-  ( W e. Word ( Vtx ` G ) -> ( N e. ( 1 ..^ ( # ` W ) ) -> { ( lastS ` ( W cyclShift N ) ) , ( ( W cyclShift N ) ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` N ) } ) ) | 
						
							| 49 | 48 | adantr |  |-  ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( N e. ( 1 ..^ ( # ` W ) ) -> { ( lastS ` ( W cyclShift N ) ) , ( ( W cyclShift N ) ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` N ) } ) ) | 
						
							| 50 | 49 | 3ad2ant1 |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( N e. ( 1 ..^ ( # ` W ) ) -> { ( lastS ` ( W cyclShift N ) ) , ( ( W cyclShift N ) ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` N ) } ) ) | 
						
							| 51 | 50 | imp |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> { ( lastS ` ( W cyclShift N ) ) , ( ( W cyclShift N ) ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` N ) } ) | 
						
							| 52 |  | elfzo1elm1fzo0 |  |-  ( N e. ( 1 ..^ ( # ` W ) ) -> ( N - 1 ) e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) | 
						
							| 53 | 52 | adantl |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( N - 1 ) e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) | 
						
							| 54 |  | fveq2 |  |-  ( i = ( N - 1 ) -> ( W ` i ) = ( W ` ( N - 1 ) ) ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) /\ i = ( N - 1 ) ) -> ( W ` i ) = ( W ` ( N - 1 ) ) ) | 
						
							| 56 |  | fvoveq1 |  |-  ( i = ( N - 1 ) -> ( W ` ( i + 1 ) ) = ( W ` ( ( N - 1 ) + 1 ) ) ) | 
						
							| 57 | 18 | zcnd |  |-  ( N e. ( 1 ..^ ( # ` W ) ) -> N e. CC ) | 
						
							| 58 | 57 | adantl |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> N e. CC ) | 
						
							| 59 |  | 1cnd |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> 1 e. CC ) | 
						
							| 60 | 58 59 | npcand |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 61 | 60 | fveq2d |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( W ` ( ( N - 1 ) + 1 ) ) = ( W ` N ) ) | 
						
							| 62 | 56 61 | sylan9eqr |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) /\ i = ( N - 1 ) ) -> ( W ` ( i + 1 ) ) = ( W ` N ) ) | 
						
							| 63 | 55 62 | preq12d |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) /\ i = ( N - 1 ) ) -> { ( W ` i ) , ( W ` ( i + 1 ) ) } = { ( W ` ( N - 1 ) ) , ( W ` N ) } ) | 
						
							| 64 | 63 | eleq1d |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) /\ i = ( N - 1 ) ) -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) | 
						
							| 65 | 53 64 | rspcdv |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) | 
						
							| 66 | 65 | a1d |  |-  ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) ) | 
						
							| 67 | 66 | ex |  |-  ( W e. Word ( Vtx ` G ) -> ( N e. ( 1 ..^ ( # ` W ) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( N e. ( 1 ..^ ( # ` W ) ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 69 | 68 | com24 |  |-  ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( N e. ( 1 ..^ ( # ` W ) ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 70 | 69 | 3imp1 |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) | 
						
							| 71 | 51 70 | eqeltrd |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> { ( lastS ` ( W cyclShift N ) ) , ( ( W cyclShift N ) ` 0 ) } e. ( Edg ` G ) ) | 
						
							| 72 | 33 39 71 | 3jca |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( 1 ..^ ( # ` W ) ) ) -> ( ( ( W cyclShift N ) e. Word ( Vtx ` G ) /\ ( W cyclShift N ) =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` ( W cyclShift N ) ) - 1 ) ) { ( ( W cyclShift N ) ` j ) , ( ( W cyclShift N ) ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` ( W cyclShift N ) ) , ( ( W cyclShift N ) ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 73 | 72 | expcom |  |-  ( N e. ( 1 ..^ ( # ` W ) ) -> ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( W cyclShift N ) e. Word ( Vtx ` G ) /\ ( W cyclShift N ) =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` ( W cyclShift N ) ) - 1 ) ) { ( ( W cyclShift N ) ` j ) , ( ( W cyclShift N ) ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` ( W cyclShift N ) ) , ( ( W cyclShift N ) ` 0 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 74 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 75 | 1 74 | isclwwlk |  |-  ( W e. ( ClWWalks ` G ) <-> ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 76 | 1 74 | isclwwlk |  |-  ( ( W cyclShift N ) e. ( ClWWalks ` G ) <-> ( ( ( W cyclShift N ) e. Word ( Vtx ` G ) /\ ( W cyclShift N ) =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` ( W cyclShift N ) ) - 1 ) ) { ( ( W cyclShift N ) ` j ) , ( ( W cyclShift N ) ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` ( W cyclShift N ) ) , ( ( W cyclShift N ) ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 77 | 73 75 76 | 3imtr4g |  |-  ( N e. ( 1 ..^ ( # ` W ) ) -> ( W e. ( ClWWalks ` G ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) ) | 
						
							| 78 | 12 77 | sylbir |  |-  ( ( N e. ( 0 ..^ ( # ` W ) ) /\ N =/= 0 ) -> ( W e. ( ClWWalks ` G ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) ) | 
						
							| 79 | 78 | expcom |  |-  ( N =/= 0 -> ( N e. ( 0 ..^ ( # ` W ) ) -> ( W e. ( ClWWalks ` G ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) ) ) | 
						
							| 80 | 79 | com13 |  |-  ( W e. ( ClWWalks ` G ) -> ( N e. ( 0 ..^ ( # ` W ) ) -> ( N =/= 0 -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) ) ) | 
						
							| 81 | 80 | imp |  |-  ( ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( N =/= 0 -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) ) | 
						
							| 82 | 11 81 | pm2.61dne |  |-  ( ( W e. ( ClWWalks ` G ) /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( W cyclShift N ) e. ( ClWWalks ` G ) ) |