| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | clwwlkbp | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ ) ) | 
						
							| 3 |  | cshw0 | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑊  cyclShift  0 )  =  𝑊 ) | 
						
							| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  →  ( 𝑊  cyclShift  0 )  =  𝑊 ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( ( 𝐺  ∈  V  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  →  ( ( 𝑊  cyclShift  0 )  ∈  ( ClWWalks ‘ 𝐺 )  ↔  𝑊  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 6 | 5 | biimprd | ⊢ ( ( 𝐺  ∈  V  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  →  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝑊  cyclShift  0 )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 7 | 2 6 | mpcom | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝑊  cyclShift  0 )  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  0 ) ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( 𝑁  =  0  →  ( ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( 𝑊  cyclShift  0 )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 10 | 7 9 | syl5ibrcom | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝑁  =  0  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑁  =  0  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 12 |  | fzo1fzo0n0 | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑁  ≠  0 ) ) | 
						
							| 13 |  | cshwcl | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑊  cyclShift  𝑁 )  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  →  ( 𝑊  cyclShift  𝑁 )  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑊  cyclShift  𝑁 )  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝑁 )  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 18 |  | elfzoelz | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 19 |  | cshwlen | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 20 | 17 18 19 | syl2an | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 21 |  | hasheq0 | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑊 )  =  0  ↔  𝑊  =  ∅ ) ) | 
						
							| 22 | 21 | bicomd | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑊  =  ∅  ↔  ( ♯ ‘ 𝑊 )  =  0 ) ) | 
						
							| 23 | 22 | necon3bid | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑊  ≠  ∅  ↔  ( ♯ ‘ 𝑊 )  ≠  0 ) ) | 
						
							| 24 | 23 | biimpa | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  →  ( ♯ ‘ 𝑊 )  ≠  0 ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ 𝑊 )  ≠  0 ) | 
						
							| 26 | 20 25 | eqnetrd | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  ≠  0 ) | 
						
							| 27 | 14 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝑁 )  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 28 |  | hasheq0 | ⊢ ( ( 𝑊  cyclShift  𝑁 )  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  0  ↔  ( 𝑊  cyclShift  𝑁 )  =  ∅ ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  0  ↔  ( 𝑊  cyclShift  𝑁 )  =  ∅ ) ) | 
						
							| 30 | 29 | necon3bid | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  ≠  0  ↔  ( 𝑊  cyclShift  𝑁 )  ≠  ∅ ) ) | 
						
							| 31 | 26 30 | mpbid | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝑁 )  ≠  ∅ ) | 
						
							| 32 | 31 | 3ad2antl1 | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝑁 )  ≠  ∅ ) | 
						
							| 33 | 16 32 | jca | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 )  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑊  cyclShift  𝑁 )  ≠  ∅ ) ) | 
						
							| 34 | 17 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 35 | 34 | anim1i | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 36 |  | 3simpc | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 38 |  | clwwisshclwwslem | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) ) { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 39 | 35 37 38 | sylc | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) ) { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 40 |  | elfzofz | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 41 |  | lswcshw | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( 𝑊 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 42 | 40 41 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( 𝑊 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 43 |  | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝑊 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) | 
						
							| 44 | 43 | sseli | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 45 |  | cshwidx0 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 46 | 44 45 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 47 | 42 46 | preq12d | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  { ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 ) }  =  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) } ) | 
						
							| 48 | 47 | ex | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  { ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 ) }  =  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) } ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  →  ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  { ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 ) }  =  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) } ) ) | 
						
							| 50 | 49 | 3ad2ant1 | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  { ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 ) }  =  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) } ) ) | 
						
							| 51 | 50 | imp | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  { ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 ) }  =  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) } ) | 
						
							| 52 |  | elfzo1elm1fzo0 | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝑁  −  1 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑁  −  1 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 54 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑁  −  1 )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  𝑖  =  ( 𝑁  −  1 ) )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 56 |  | fvoveq1 | ⊢ ( 𝑖  =  ( 𝑁  −  1 )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  =  ( 𝑊 ‘ ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 57 | 18 | zcnd | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ℂ ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑁  ∈  ℂ ) | 
						
							| 59 |  | 1cnd | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  1  ∈  ℂ ) | 
						
							| 60 | 58 59 | npcand | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 61 | 60 | fveq2d | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ ( ( 𝑁  −  1 )  +  1 ) )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 62 | 56 61 | sylan9eqr | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  𝑖  =  ( 𝑁  −  1 ) )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 63 | 55 62 | preq12d | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  𝑖  =  ( 𝑁  −  1 ) )  →  { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  =  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) } ) | 
						
							| 64 | 63 | eleq1d | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  𝑖  =  ( 𝑁  −  1 ) )  →  ( { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 65 | 53 64 | rspcdv | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 66 | 65 | a1d | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 67 | 66 | ex | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  →  ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 69 | 68 | com24 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  ( { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  →  ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 70 | 69 | 3imp1 | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  { ( 𝑊 ‘ ( 𝑁  −  1 ) ) ,  ( 𝑊 ‘ 𝑁 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 71 | 51 70 | eqeltrd | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  { ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 72 | 33 39 71 | 3jca | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( 𝑊  cyclShift  𝑁 )  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑊  cyclShift  𝑁 )  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) ) { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 73 | 72 | expcom | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ( ( 𝑊  cyclShift  𝑁 )  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑊  cyclShift  𝑁 )  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) ) { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 74 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 75 | 1 74 | isclwwlk | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 76 | 1 74 | isclwwlk | ⊢ ( ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( ( ( 𝑊  cyclShift  𝑁 )  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑊  cyclShift  𝑁 )  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) ) { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 77 | 73 75 76 | 3imtr4g | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 78 | 12 77 | sylbir | ⊢ ( ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝑁  ≠  0 )  →  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 79 | 78 | expcom | ⊢ ( 𝑁  ≠  0  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) ) | 
						
							| 80 | 79 | com13 | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝑁  ≠  0  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) ) | 
						
							| 81 | 80 | imp | ⊢ ( ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑁  ≠  0  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 82 | 11 81 | pm2.61dne | ⊢ ( ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  cyclShift  𝑁 )  ∈  ( ClWWalks ‘ 𝐺 ) ) |