| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovex | ⊢ ( 𝑊  cyclShift  𝑁 )  ∈  V | 
						
							| 2 |  | lsw | ⊢ ( ( 𝑊  cyclShift  𝑁 )  ∈  V  →  ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) ) ) | 
						
							| 3 | 1 2 | mp1i | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) ) ) | 
						
							| 4 |  | elfzelz | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 5 |  | cshwlen | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 6 | 4 5 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 7 | 6 | fvoveq1d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) )  =  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 8 |  | cshwidxn | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑊 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 9 | 3 7 8 | 3eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( lastS ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( 𝑊 ‘ ( 𝑁  −  1 ) ) ) |