| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
| 2 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
| 3 |
|
addcom |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) ) |
| 4 |
1 2 3
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) ) |
| 5 |
4
|
3adant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) ) |
| 6 |
5
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) = ( 𝑊 cyclShift ( 𝑁 + 𝑀 ) ) ) |
| 7 |
|
2cshw |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) |
| 8 |
7
|
3com23 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) |
| 9 |
|
2cshw |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift 𝑀 ) = ( 𝑊 cyclShift ( 𝑁 + 𝑀 ) ) ) |
| 10 |
6 8 9
|
3eqtr4rd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift 𝑀 ) = ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) |