| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℂ ) | 
						
							| 2 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 3 |  | addcom | ⊢ ( ( 𝑀  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( 𝑀  +  𝑁 )  =  ( 𝑁  +  𝑀 ) ) | 
						
							| 4 | 1 2 3 | syl2anr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑀  +  𝑁 )  =  ( 𝑁  +  𝑀 ) ) | 
						
							| 5 | 4 | 3adant1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑀  +  𝑁 )  =  ( 𝑁  +  𝑀 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) )  =  ( 𝑊  cyclShift  ( 𝑁  +  𝑀 ) ) ) | 
						
							| 7 |  | 2cshw | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 8 | 7 | 3com23 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 )  =  ( 𝑊  cyclShift  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 9 |  | 2cshw | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑁 )  cyclShift  𝑀 )  =  ( 𝑊  cyclShift  ( 𝑁  +  𝑀 ) ) ) | 
						
							| 10 | 6 8 9 | 3eqtr4rd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑁 )  cyclShift  𝑀 )  =  ( ( 𝑊  cyclShift  𝑀 )  cyclShift  𝑁 ) ) |