Metamath Proof Explorer


Theorem clwwisshclwws

Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Mar-2018) (Revised by AV, 28-Apr-2021)

Ref Expression
Assertion clwwisshclwws W ClWWalks G N 0 ..^ W W cyclShift N ClWWalks G

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 clwwlkbp W ClWWalks G G V W Word Vtx G W
3 cshw0 W Word Vtx G W cyclShift 0 = W
4 3 3ad2ant2 G V W Word Vtx G W W cyclShift 0 = W
5 4 eleq1d G V W Word Vtx G W W cyclShift 0 ClWWalks G W ClWWalks G
6 5 biimprd G V W Word Vtx G W W ClWWalks G W cyclShift 0 ClWWalks G
7 2 6 mpcom W ClWWalks G W cyclShift 0 ClWWalks G
8 oveq2 N = 0 W cyclShift N = W cyclShift 0
9 8 eleq1d N = 0 W cyclShift N ClWWalks G W cyclShift 0 ClWWalks G
10 7 9 syl5ibrcom W ClWWalks G N = 0 W cyclShift N ClWWalks G
11 10 adantr W ClWWalks G N 0 ..^ W N = 0 W cyclShift N ClWWalks G
12 fzo1fzo0n0 N 1 ..^ W N 0 ..^ W N 0
13 cshwcl W Word Vtx G W cyclShift N Word Vtx G
14 13 adantr W Word Vtx G W W cyclShift N Word Vtx G
15 14 3ad2ant1 W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G W cyclShift N Word Vtx G
16 15 adantr W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W W cyclShift N Word Vtx G
17 simpl W Word Vtx G W W Word Vtx G
18 elfzoelz N 1 ..^ W N
19 cshwlen W Word Vtx G N W cyclShift N = W
20 17 18 19 syl2an W Word Vtx G W N 1 ..^ W W cyclShift N = W
21 hasheq0 W Word Vtx G W = 0 W =
22 21 bicomd W Word Vtx G W = W = 0
23 22 necon3bid W Word Vtx G W W 0
24 23 biimpa W Word Vtx G W W 0
25 24 adantr W Word Vtx G W N 1 ..^ W W 0
26 20 25 eqnetrd W Word Vtx G W N 1 ..^ W W cyclShift N 0
27 14 adantr W Word Vtx G W N 1 ..^ W W cyclShift N Word Vtx G
28 hasheq0 W cyclShift N Word Vtx G W cyclShift N = 0 W cyclShift N =
29 27 28 syl W Word Vtx G W N 1 ..^ W W cyclShift N = 0 W cyclShift N =
30 29 necon3bid W Word Vtx G W N 1 ..^ W W cyclShift N 0 W cyclShift N
31 26 30 mpbid W Word Vtx G W N 1 ..^ W W cyclShift N
32 31 3ad2antl1 W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W W cyclShift N
33 16 32 jca W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W W cyclShift N Word Vtx G W cyclShift N
34 17 3ad2ant1 W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G W Word Vtx G
35 34 anim1i W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W W Word Vtx G N 1 ..^ W
36 3simpc W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G
37 36 adantr W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G
38 clwwisshclwwslem W Word Vtx G N 1 ..^ W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G j 0 ..^ W cyclShift N 1 W cyclShift N j W cyclShift N j + 1 Edg G
39 35 37 38 sylc W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W j 0 ..^ W cyclShift N 1 W cyclShift N j W cyclShift N j + 1 Edg G
40 elfzofz N 1 ..^ W N 1 W
41 lswcshw W Word Vtx G N 1 W lastS W cyclShift N = W N 1
42 40 41 sylan2 W Word Vtx G N 1 ..^ W lastS W cyclShift N = W N 1
43 fzo0ss1 1 ..^ W 0 ..^ W
44 43 sseli N 1 ..^ W N 0 ..^ W
45 cshwidx0 W Word Vtx G N 0 ..^ W W cyclShift N 0 = W N
46 44 45 sylan2 W Word Vtx G N 1 ..^ W W cyclShift N 0 = W N
47 42 46 preq12d W Word Vtx G N 1 ..^ W lastS W cyclShift N W cyclShift N 0 = W N 1 W N
48 47 ex W Word Vtx G N 1 ..^ W lastS W cyclShift N W cyclShift N 0 = W N 1 W N
49 48 adantr W Word Vtx G W N 1 ..^ W lastS W cyclShift N W cyclShift N 0 = W N 1 W N
50 49 3ad2ant1 W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W lastS W cyclShift N W cyclShift N 0 = W N 1 W N
51 50 imp W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W lastS W cyclShift N W cyclShift N 0 = W N 1 W N
52 elfzo1elm1fzo0 N 1 ..^ W N 1 0 ..^ W 1
53 52 adantl W Word Vtx G N 1 ..^ W N 1 0 ..^ W 1
54 fveq2 i = N 1 W i = W N 1
55 54 adantl W Word Vtx G N 1 ..^ W i = N 1 W i = W N 1
56 fvoveq1 i = N 1 W i + 1 = W N - 1 + 1
57 18 zcnd N 1 ..^ W N
58 57 adantl W Word Vtx G N 1 ..^ W N
59 1cnd W Word Vtx G N 1 ..^ W 1
60 58 59 npcand W Word Vtx G N 1 ..^ W N - 1 + 1 = N
61 60 fveq2d W Word Vtx G N 1 ..^ W W N - 1 + 1 = W N
62 56 61 sylan9eqr W Word Vtx G N 1 ..^ W i = N 1 W i + 1 = W N
63 55 62 preq12d W Word Vtx G N 1 ..^ W i = N 1 W i W i + 1 = W N 1 W N
64 63 eleq1d W Word Vtx G N 1 ..^ W i = N 1 W i W i + 1 Edg G W N 1 W N Edg G
65 53 64 rspcdv W Word Vtx G N 1 ..^ W i 0 ..^ W 1 W i W i + 1 Edg G W N 1 W N Edg G
66 65 a1d W Word Vtx G N 1 ..^ W lastS W W 0 Edg G i 0 ..^ W 1 W i W i + 1 Edg G W N 1 W N Edg G
67 66 ex W Word Vtx G N 1 ..^ W lastS W W 0 Edg G i 0 ..^ W 1 W i W i + 1 Edg G W N 1 W N Edg G
68 67 adantr W Word Vtx G W N 1 ..^ W lastS W W 0 Edg G i 0 ..^ W 1 W i W i + 1 Edg G W N 1 W N Edg G
69 68 com24 W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W W N 1 W N Edg G
70 69 3imp1 W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W W N 1 W N Edg G
71 51 70 eqeltrd W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W lastS W cyclShift N W cyclShift N 0 Edg G
72 33 39 71 3jca W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G N 1 ..^ W W cyclShift N Word Vtx G W cyclShift N j 0 ..^ W cyclShift N 1 W cyclShift N j W cyclShift N j + 1 Edg G lastS W cyclShift N W cyclShift N 0 Edg G
73 72 expcom N 1 ..^ W W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G W cyclShift N Word Vtx G W cyclShift N j 0 ..^ W cyclShift N 1 W cyclShift N j W cyclShift N j + 1 Edg G lastS W cyclShift N W cyclShift N 0 Edg G
74 eqid Edg G = Edg G
75 1 74 isclwwlk W ClWWalks G W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G
76 1 74 isclwwlk W cyclShift N ClWWalks G W cyclShift N Word Vtx G W cyclShift N j 0 ..^ W cyclShift N 1 W cyclShift N j W cyclShift N j + 1 Edg G lastS W cyclShift N W cyclShift N 0 Edg G
77 73 75 76 3imtr4g N 1 ..^ W W ClWWalks G W cyclShift N ClWWalks G
78 12 77 sylbir N 0 ..^ W N 0 W ClWWalks G W cyclShift N ClWWalks G
79 78 expcom N 0 N 0 ..^ W W ClWWalks G W cyclShift N ClWWalks G
80 79 com13 W ClWWalks G N 0 ..^ W N 0 W cyclShift N ClWWalks G
81 80 imp W ClWWalks G N 0 ..^ W N 0 W cyclShift N ClWWalks G
82 11 81 pm2.61dne W ClWWalks G N 0 ..^ W W cyclShift N ClWWalks G