Metamath Proof Explorer


Theorem clwwisshclwws

Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Mar-2018) (Revised by AV, 28-Apr-2021)

Ref Expression
Assertion clwwisshclwws WClWWalksGN0..^WWcyclShiftNClWWalksG

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 clwwlkbp WClWWalksGGVWWordVtxGW
3 cshw0 WWordVtxGWcyclShift0=W
4 3 3ad2ant2 GVWWordVtxGWWcyclShift0=W
5 4 eleq1d GVWWordVtxGWWcyclShift0ClWWalksGWClWWalksG
6 5 biimprd GVWWordVtxGWWClWWalksGWcyclShift0ClWWalksG
7 2 6 mpcom WClWWalksGWcyclShift0ClWWalksG
8 oveq2 N=0WcyclShiftN=WcyclShift0
9 8 eleq1d N=0WcyclShiftNClWWalksGWcyclShift0ClWWalksG
10 7 9 syl5ibrcom WClWWalksGN=0WcyclShiftNClWWalksG
11 10 adantr WClWWalksGN0..^WN=0WcyclShiftNClWWalksG
12 fzo1fzo0n0 N1..^WN0..^WN0
13 cshwcl WWordVtxGWcyclShiftNWordVtxG
14 13 adantr WWordVtxGWWcyclShiftNWordVtxG
15 14 3ad2ant1 WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGWcyclShiftNWordVtxG
16 15 adantr WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^WWcyclShiftNWordVtxG
17 simpl WWordVtxGWWWordVtxG
18 elfzoelz N1..^WN
19 cshwlen WWordVtxGNWcyclShiftN=W
20 17 18 19 syl2an WWordVtxGWN1..^WWcyclShiftN=W
21 hasheq0 WWordVtxGW=0W=
22 21 bicomd WWordVtxGW=W=0
23 22 necon3bid WWordVtxGWW0
24 23 biimpa WWordVtxGWW0
25 24 adantr WWordVtxGWN1..^WW0
26 20 25 eqnetrd WWordVtxGWN1..^WWcyclShiftN0
27 14 adantr WWordVtxGWN1..^WWcyclShiftNWordVtxG
28 hasheq0 WcyclShiftNWordVtxGWcyclShiftN=0WcyclShiftN=
29 27 28 syl WWordVtxGWN1..^WWcyclShiftN=0WcyclShiftN=
30 29 necon3bid WWordVtxGWN1..^WWcyclShiftN0WcyclShiftN
31 26 30 mpbid WWordVtxGWN1..^WWcyclShiftN
32 31 3ad2antl1 WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^WWcyclShiftN
33 16 32 jca WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^WWcyclShiftNWordVtxGWcyclShiftN
34 17 3ad2ant1 WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGWWordVtxG
35 34 anim1i WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^WWWordVtxGN1..^W
36 3simpc WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGi0..^W1WiWi+1EdgGlastSWW0EdgG
37 36 adantr WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^Wi0..^W1WiWi+1EdgGlastSWW0EdgG
38 clwwisshclwwslem WWordVtxGN1..^Wi0..^W1WiWi+1EdgGlastSWW0EdgGj0..^WcyclShiftN1WcyclShiftNjWcyclShiftNj+1EdgG
39 35 37 38 sylc WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^Wj0..^WcyclShiftN1WcyclShiftNjWcyclShiftNj+1EdgG
40 elfzofz N1..^WN1W
41 lswcshw WWordVtxGN1WlastSWcyclShiftN=WN1
42 40 41 sylan2 WWordVtxGN1..^WlastSWcyclShiftN=WN1
43 fzo0ss1 1..^W0..^W
44 43 sseli N1..^WN0..^W
45 cshwidx0 WWordVtxGN0..^WWcyclShiftN0=WN
46 44 45 sylan2 WWordVtxGN1..^WWcyclShiftN0=WN
47 42 46 preq12d WWordVtxGN1..^WlastSWcyclShiftNWcyclShiftN0=WN1WN
48 47 ex WWordVtxGN1..^WlastSWcyclShiftNWcyclShiftN0=WN1WN
49 48 adantr WWordVtxGWN1..^WlastSWcyclShiftNWcyclShiftN0=WN1WN
50 49 3ad2ant1 WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^WlastSWcyclShiftNWcyclShiftN0=WN1WN
51 50 imp WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^WlastSWcyclShiftNWcyclShiftN0=WN1WN
52 elfzo1elm1fzo0 N1..^WN10..^W1
53 52 adantl WWordVtxGN1..^WN10..^W1
54 fveq2 i=N1Wi=WN1
55 54 adantl WWordVtxGN1..^Wi=N1Wi=WN1
56 fvoveq1 i=N1Wi+1=WN-1+1
57 18 zcnd N1..^WN
58 57 adantl WWordVtxGN1..^WN
59 1cnd WWordVtxGN1..^W1
60 58 59 npcand WWordVtxGN1..^WN-1+1=N
61 60 fveq2d WWordVtxGN1..^WWN-1+1=WN
62 56 61 sylan9eqr WWordVtxGN1..^Wi=N1Wi+1=WN
63 55 62 preq12d WWordVtxGN1..^Wi=N1WiWi+1=WN1WN
64 63 eleq1d WWordVtxGN1..^Wi=N1WiWi+1EdgGWN1WNEdgG
65 53 64 rspcdv WWordVtxGN1..^Wi0..^W1WiWi+1EdgGWN1WNEdgG
66 65 a1d WWordVtxGN1..^WlastSWW0EdgGi0..^W1WiWi+1EdgGWN1WNEdgG
67 66 ex WWordVtxGN1..^WlastSWW0EdgGi0..^W1WiWi+1EdgGWN1WNEdgG
68 67 adantr WWordVtxGWN1..^WlastSWW0EdgGi0..^W1WiWi+1EdgGWN1WNEdgG
69 68 com24 WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^WWN1WNEdgG
70 69 3imp1 WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^WWN1WNEdgG
71 51 70 eqeltrd WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^WlastSWcyclShiftNWcyclShiftN0EdgG
72 33 39 71 3jca WWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGN1..^WWcyclShiftNWordVtxGWcyclShiftNj0..^WcyclShiftN1WcyclShiftNjWcyclShiftNj+1EdgGlastSWcyclShiftNWcyclShiftN0EdgG
73 72 expcom N1..^WWWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgGWcyclShiftNWordVtxGWcyclShiftNj0..^WcyclShiftN1WcyclShiftNjWcyclShiftNj+1EdgGlastSWcyclShiftNWcyclShiftN0EdgG
74 eqid EdgG=EdgG
75 1 74 isclwwlk WClWWalksGWWordVtxGWi0..^W1WiWi+1EdgGlastSWW0EdgG
76 1 74 isclwwlk WcyclShiftNClWWalksGWcyclShiftNWordVtxGWcyclShiftNj0..^WcyclShiftN1WcyclShiftNjWcyclShiftNj+1EdgGlastSWcyclShiftNWcyclShiftN0EdgG
77 73 75 76 3imtr4g N1..^WWClWWalksGWcyclShiftNClWWalksG
78 12 77 sylbir N0..^WN0WClWWalksGWcyclShiftNClWWalksG
79 78 expcom N0N0..^WWClWWalksGWcyclShiftNClWWalksG
80 79 com13 WClWWalksGN0..^WN0WcyclShiftNClWWalksG
81 80 imp WClWWalksGN0..^WN0WcyclShiftNClWWalksG
82 11 81 pm2.61dne WClWWalksGN0..^WWcyclShiftNClWWalksG