Metamath Proof Explorer


Theorem clwwisshclwwsn

Description: Cyclically shifting a closed walk as word results in a closed walk as word (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jun-2018) (Revised by AV, 29-Apr-2021)

Ref Expression
Assertion clwwisshclwwsn WClWWalksGN0WWcyclShiftNClWWalksG

Proof

Step Hyp Ref Expression
1 oveq2 N=WWcyclShiftN=WcyclShiftW
2 eqid VtxG=VtxG
3 2 clwwlkbp WClWWalksGGVWWordVtxGW
4 3 simp2d WClWWalksGWWordVtxG
5 cshwn WWordVtxGWcyclShiftW=W
6 4 5 syl WClWWalksGWcyclShiftW=W
7 6 adantr WClWWalksGN0WWcyclShiftW=W
8 1 7 sylan9eq N=WWClWWalksGN0WWcyclShiftN=W
9 simprl N=WWClWWalksGN0WWClWWalksG
10 8 9 eqeltrd N=WWClWWalksGN0WWcyclShiftNClWWalksG
11 simprl ¬N=WWClWWalksGN0WWClWWalksG
12 df-ne NW¬N=W
13 fzofzim NWN0WN0..^W
14 13 expcom N0WNWN0..^W
15 12 14 biimtrrid N0W¬N=WN0..^W
16 15 adantl WClWWalksGN0W¬N=WN0..^W
17 16 impcom ¬N=WWClWWalksGN0WN0..^W
18 clwwisshclwws WClWWalksGN0..^WWcyclShiftNClWWalksG
19 11 17 18 syl2anc ¬N=WWClWWalksGN0WWcyclShiftNClWWalksG
20 10 19 pm2.61ian WClWWalksGN0WWcyclShiftNClWWalksG