| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzoelz | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 2 |  | cshwlen | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 4 | 3 | oveq1d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 0 ..^ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) )  ↔  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  →  ( 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) )  ↔  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) ) | 
						
							| 8 |  | simpll | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 9 | 1 | ad2antlr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 10 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 11 |  | nn0z | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 12 |  | peano2zm | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℤ  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℤ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℤ ) | 
						
							| 14 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 15 | 14 | lem1d | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 16 |  | eluz2 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ↔  ( ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑊 )  −  1 )  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 17 | 13 11 15 16 | syl3anbrc | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 18 | 10 17 | syl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 20 |  | fzoss2 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 22 | 21 | sselda | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 23 |  | cshwidxmod | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 )  =  ( 𝑊 ‘ ( ( 𝑗  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 24 | 8 9 22 23 | syl3anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 )  =  ( 𝑊 ‘ ( ( 𝑗  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 25 |  | elfzo1 | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 26 | 25 | simp2bi | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 28 |  | elfzom1p1elfzo | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  ( 𝑗  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 29 | 27 28 | sylan | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  ( 𝑗  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 30 |  | cshwidxmod | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( 𝑗  +  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑊 ‘ ( ( ( 𝑗  +  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 31 | 8 9 29 30 | syl3anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) )  =  ( 𝑊 ‘ ( ( ( 𝑗  +  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 32 | 24 31 | preq12d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  =  { ( 𝑊 ‘ ( ( 𝑗  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ,  ( 𝑊 ‘ ( ( ( 𝑗  +  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) } ) | 
						
							| 33 | 32 | adantlr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  =  { ( 𝑊 ‘ ( ( 𝑗  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ,  ( 𝑊 ‘ ( ( ( 𝑗  +  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) } ) | 
						
							| 34 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 35 | 34 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  2  ∈  ℤ ) | 
						
							| 36 |  | nnz | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 37 | 36 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 38 |  | nnnn0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 40 |  | nnne0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ♯ ‘ 𝑊 )  ≠  0 ) | 
						
							| 41 | 40 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ≠  0 ) | 
						
							| 42 |  | 1red | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  1  ∈  ℝ ) | 
						
							| 43 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 44 | 43 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 45 |  | nnre | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 46 | 45 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 47 |  | nnge1 | ⊢ ( 𝑁  ∈  ℕ  →  1  ≤  𝑁 ) | 
						
							| 48 | 47 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  1  ≤  𝑁 ) | 
						
							| 49 |  | simp3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  𝑁  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 50 | 42 44 46 48 49 | lelttrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  1  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 51 | 42 50 | gtned | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ≠  1 ) | 
						
							| 52 |  | nn0n0n1ge2 | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ≠  0  ∧  ( ♯ ‘ 𝑊 )  ≠  1 )  →  2  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 53 | 39 41 51 52 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  2  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 54 |  | eluz2 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  2  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 55 | 35 37 53 54 | syl3anbrc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 56 | 25 55 | sylbi | ⊢ ( 𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 57 | 56 | ad3antlr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 58 |  | elfzoelz | ⊢ ( 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 60 | 1 | ad3antlr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 61 |  | simplrl | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) | 
						
							| 62 |  | lsw | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( lastS ‘ 𝑊 )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( lastS ‘ 𝑊 )  =  ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 64 | 63 | preq1d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  =  { ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ,  ( 𝑊 ‘ 0 ) } ) | 
						
							| 65 | 64 | eleq1d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸  ↔  { ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) | 
						
							| 66 | 65 | biimpcd | ⊢ ( { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  { ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  { ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) | 
						
							| 68 | 67 | impcom | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  →  { ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  { ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) | 
						
							| 70 |  | clwwisshclwwslemlem | ⊢ ( ( ( ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑗  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 )  →  { ( 𝑊 ‘ ( ( 𝑗  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ,  ( 𝑊 ‘ ( ( ( 𝑗  +  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) }  ∈  𝐸 ) | 
						
							| 71 | 57 59 60 61 69 70 | syl311anc | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  { ( 𝑊 ‘ ( ( 𝑗  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ,  ( 𝑊 ‘ ( ( ( 𝑗  +  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) }  ∈  𝐸 ) | 
						
							| 72 | 33 71 | eqeltrd | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  →  { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  ∈  𝐸 ) | 
						
							| 73 | 72 | ex | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  →  ( 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 74 | 7 73 | sylbid | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  →  ( 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) )  →  { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 75 | 74 | ralrimiv | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) )  →  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) ) { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  ∈  𝐸 ) | 
						
							| 76 | 75 | ex | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 )  →  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  −  1 ) ) { ( ( 𝑊  cyclShift  𝑁 ) ‘ 𝑗 ) ,  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( 𝑗  +  1 ) ) }  ∈  𝐸 ) ) |