| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hasheq0 |  |-  ( W e. Word V -> ( ( # ` W ) = 0 <-> W = (/) ) ) | 
						
							| 2 |  | elfzo0 |  |-  ( N e. ( 0 ..^ ( # ` W ) ) <-> ( N e. NN0 /\ ( # ` W ) e. NN /\ N < ( # ` W ) ) ) | 
						
							| 3 |  | elnnne0 |  |-  ( ( # ` W ) e. NN <-> ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) ) | 
						
							| 4 |  | eqneqall |  |-  ( ( # ` W ) = 0 -> ( ( # ` W ) =/= 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) | 
						
							| 5 | 4 | com12 |  |-  ( ( # ` W ) =/= 0 -> ( ( # ` W ) = 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> ( ( # ` W ) = 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) | 
						
							| 7 | 3 6 | sylbi |  |-  ( ( # ` W ) e. NN -> ( ( # ` W ) = 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) | 
						
							| 8 | 7 | 3ad2ant2 |  |-  ( ( N e. NN0 /\ ( # ` W ) e. NN /\ N < ( # ` W ) ) -> ( ( # ` W ) = 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) | 
						
							| 9 | 2 8 | sylbi |  |-  ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( # ` W ) = 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) | 
						
							| 10 | 9 | com13 |  |-  ( W e. Word V -> ( ( # ` W ) = 0 -> ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) | 
						
							| 11 | 1 10 | sylbird |  |-  ( W e. Word V -> ( W = (/) -> ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) | 
						
							| 12 | 11 | com23 |  |-  ( W e. Word V -> ( N e. ( 0 ..^ ( # ` W ) ) -> ( W = (/) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( W = (/) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) | 
						
							| 14 | 13 | com12 |  |-  ( W = (/) -> ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) | 
						
							| 15 |  | simpl |  |-  ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word V ) | 
						
							| 16 | 15 | adantl |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> W e. Word V ) | 
						
							| 17 |  | simpl |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> W =/= (/) ) | 
						
							| 18 |  | elfzoelz |  |-  ( N e. ( 0 ..^ ( # ` W ) ) -> N e. ZZ ) | 
						
							| 19 | 18 | ad2antll |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> N e. ZZ ) | 
						
							| 20 |  | cshwidx0mod |  |-  ( ( W e. Word V /\ W =/= (/) /\ N e. ZZ ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` ( N mod ( # ` W ) ) ) ) | 
						
							| 21 | 16 17 19 20 | syl3anc |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` ( N mod ( # ` W ) ) ) ) | 
						
							| 22 |  | zmodidfzoimp |  |-  ( N e. ( 0 ..^ ( # ` W ) ) -> ( N mod ( # ` W ) ) = N ) | 
						
							| 23 | 22 | ad2antll |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> ( N mod ( # ` W ) ) = N ) | 
						
							| 24 | 23 | fveq2d |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` ( N mod ( # ` W ) ) ) = ( W ` N ) ) | 
						
							| 25 | 21 24 | eqtrd |  |-  ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) | 
						
							| 26 | 25 | ex |  |-  ( W =/= (/) -> ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) | 
						
							| 27 | 14 26 | pm2.61ine |  |-  ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) |