| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( W e. Word V /\ W =/= (/) /\ N e. ZZ ) -> W e. Word V ) | 
						
							| 2 |  | simp3 |  |-  ( ( W e. Word V /\ W =/= (/) /\ N e. ZZ ) -> N e. ZZ ) | 
						
							| 3 |  | lennncl |  |-  ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) | 
						
							| 4 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( # ` W ) ) <-> ( # ` W ) e. NN ) | 
						
							| 5 | 3 4 | sylibr |  |-  ( ( W e. Word V /\ W =/= (/) ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( W e. Word V /\ W =/= (/) /\ N e. ZZ ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 7 |  | cshwidxmod |  |-  ( ( W e. Word V /\ N e. ZZ /\ 0 e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` ( ( 0 + N ) mod ( # ` W ) ) ) ) | 
						
							| 8 | 1 2 6 7 | syl3anc |  |-  ( ( W e. Word V /\ W =/= (/) /\ N e. ZZ ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` ( ( 0 + N ) mod ( # ` W ) ) ) ) | 
						
							| 9 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 10 | 9 | addlidd |  |-  ( N e. ZZ -> ( 0 + N ) = N ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( W e. Word V /\ W =/= (/) /\ N e. ZZ ) -> ( 0 + N ) = N ) | 
						
							| 12 | 11 | fvoveq1d |  |-  ( ( W e. Word V /\ W =/= (/) /\ N e. ZZ ) -> ( W ` ( ( 0 + N ) mod ( # ` W ) ) ) = ( W ` ( N mod ( # ` W ) ) ) ) | 
						
							| 13 | 8 12 | eqtrd |  |-  ( ( W e. Word V /\ W =/= (/) /\ N e. ZZ ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` ( N mod ( # ` W ) ) ) ) |