| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅  ∧  𝑁  ∈  ℤ )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 2 |  | simp3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅  ∧  𝑁  ∈  ℤ )  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | lennncl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 4 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 5 | 3 4 | sylibr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅  ∧  𝑁  ∈  ℤ )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 7 |  | cshwidxmod | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 8 | 1 2 6 7 | syl3anc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 )  =  ( 𝑊 ‘ ( ( 0  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 9 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 10 | 9 | addlidd | ⊢ ( 𝑁  ∈  ℤ  →  ( 0  +  𝑁 )  =  𝑁 ) | 
						
							| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅  ∧  𝑁  ∈  ℤ )  →  ( 0  +  𝑁 )  =  𝑁 ) | 
						
							| 12 | 11 | fvoveq1d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅  ∧  𝑁  ∈  ℤ )  →  ( 𝑊 ‘ ( ( 0  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 13 | 8 12 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ 0 )  =  ( 𝑊 ‘ ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) |