| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn1.w | ⊢ 𝑊  =  ( 𝑁  ClWWalksN  𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 2 | clwwlknbp | ⊢ ( 𝑌  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑌  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) ) | 
						
							| 4 | 3 1 | eleq2s | ⊢ ( 𝑌  ∈  𝑊  →  ( 𝑌  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 )  →  ( 𝑌  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 ) )  →  ( 𝑌  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 ) )  ∧  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  ( 𝑌  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 ) )  →  𝐾  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 ) )  ∧  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  𝐾  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  𝑋  =  ( 𝑌  cyclShift  𝐾 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 ) )  ∧  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  𝑋  =  ( 𝑌  cyclShift  𝐾 ) ) | 
						
							| 12 |  | simprr | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 ) )  ∧  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) | 
						
							| 13 | 9 11 12 | 3jca | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 ) )  ∧  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) ) | 
						
							| 14 |  | 2cshwcshw | ⊢ ( ( 𝑌  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 15 | 7 13 14 | sylc | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 ) )  ∧  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 16 | 15 | ex | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑌  ∈  𝑊 ) )  →  ( ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) |