| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn1.w | ⊢ 𝑊  =  ( 𝑁  ClWWalksN  𝐺 ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  →  𝑘  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 3 | 2 | anim1i | ⊢ ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑚 ) )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  →  𝑋  =  ( 𝑥  cyclShift  𝑘 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  𝑋  =  ( 𝑥  cyclShift  𝑘 ) ) | 
						
							| 7 | 6 | anim1i | ⊢ ( ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑚 ) )  →  ( 𝑋  =  ( 𝑥  cyclShift  𝑘 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 8 | 1 | eleclclwwlknlem1 | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  ( ( 𝑋  =  ( 𝑥  cyclShift  𝑘 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑚 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 9 | 4 7 8 | sylc | ⊢ ( ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑚 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 11 | 10 | clwwlknbp | ⊢ ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 ) ) | 
						
							| 12 | 11 1 | eleq2s | ⊢ ( 𝑥  ∈  𝑊  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 ) ) | 
						
							| 13 |  | fznn0sub2 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( 𝑁  −  𝑘 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝑁  →  ( ( ♯ ‘ 𝑥 )  −  𝑘 )  =  ( 𝑁  −  𝑘 ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝑁  →  ( ( ( ♯ ‘ 𝑥 )  −  𝑘 )  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑁  −  𝑘 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 16 | 13 15 | imbitrrid | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝑁  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( ♯ ‘ 𝑥 )  −  𝑘 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( ♯ ‘ 𝑥 )  −  𝑘 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 18 | 12 17 | syl | ⊢ ( 𝑥  ∈  𝑊  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( ♯ ‘ 𝑥 )  −  𝑘 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( ♯ ‘ 𝑥 )  −  𝑘 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 20 | 19 | com12 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  →  ( ( ♯ ‘ 𝑥 )  −  𝑘 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  →  ( ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  →  ( ( ♯ ‘ 𝑥 )  −  𝑘 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  ( ( ♯ ‘ 𝑥 )  −  𝑘 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) )  →  ( ( ♯ ‘ 𝑥 )  −  𝑘 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) ) | 
						
							| 25 | 24 | ancomd | ⊢ ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  ( 𝑥  ∈  𝑊  ∧  𝑋  ∈  𝑊 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) )  →  ( 𝑥  ∈  𝑊  ∧  𝑋  ∈  𝑊 ) ) | 
						
							| 27 | 23 26 | jca | ⊢ ( ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) )  →  ( ( ( ♯ ‘ 𝑥 )  −  𝑘 )  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑥  ∈  𝑊  ∧  𝑋  ∈  𝑊 ) ) ) | 
						
							| 28 |  | simpll | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑥  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 29 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 0 ... 𝑁 )  =  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 30 | 29 | eleq2d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  ↔  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 31 | 30 | eqcoms | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝑁  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  ↔  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  ↔  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 33 | 32 | biimpa | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 34 | 28 33 | jca | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 35 | 34 | ex | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ) | 
						
							| 36 | 12 35 | syl | ⊢ ( 𝑥  ∈  𝑊  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ) | 
						
							| 38 | 37 | com12 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  →  ( ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 41 | 5 | eqcomd | ⊢ ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  →  ( 𝑥  cyclShift  𝑘 )  =  𝑋 ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  ( 𝑥  cyclShift  𝑘 )  =  𝑋 ) | 
						
							| 43 |  | oveq1 | ⊢ ( 𝑋  =  ( 𝑥  cyclShift  𝑘 )  →  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑥 )  −  𝑘 ) )  =  ( ( 𝑥  cyclShift  𝑘 )  cyclShift  ( ( ♯ ‘ 𝑥 )  −  𝑘 ) ) ) | 
						
							| 44 | 43 | eqcoms | ⊢ ( ( 𝑥  cyclShift  𝑘 )  =  𝑋  →  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑥 )  −  𝑘 ) )  =  ( ( 𝑥  cyclShift  𝑘 )  cyclShift  ( ( ♯ ‘ 𝑥 )  −  𝑘 ) ) ) | 
						
							| 45 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 46 |  | 2cshwid | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑥  cyclShift  𝑘 )  cyclShift  ( ( ♯ ‘ 𝑥 )  −  𝑘 ) )  =  𝑥 ) | 
						
							| 47 | 45 46 | sylan2 | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) )  →  ( ( 𝑥  cyclShift  𝑘 )  cyclShift  ( ( ♯ ‘ 𝑥 )  −  𝑘 ) )  =  𝑥 ) | 
						
							| 48 | 44 47 | sylan9eqr | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑘  ∈  ( 0 ... ( ♯ ‘ 𝑥 ) ) )  ∧  ( 𝑥  cyclShift  𝑘 )  =  𝑋 )  →  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑥 )  −  𝑘 ) )  =  𝑥 ) | 
						
							| 49 | 40 42 48 | syl2anc | ⊢ ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑥 )  −  𝑘 ) )  =  𝑥 ) | 
						
							| 50 | 49 | eqcomd | ⊢ ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  𝑥  =  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑥 )  −  𝑘 ) ) ) | 
						
							| 51 | 50 | anim1i | ⊢ ( ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) )  →  ( 𝑥  =  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑥 )  −  𝑘 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 52 | 1 | eleclclwwlknlem1 | ⊢ ( ( ( ( ♯ ‘ 𝑥 )  −  𝑘 )  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑥  ∈  𝑊  ∧  𝑋  ∈  𝑊 ) )  →  ( ( 𝑥  =  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑥 )  −  𝑘 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) )  →  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 53 | 27 51 52 | sylc | ⊢ ( ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) )  →  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 54 | 9 53 | impbida | ⊢ ( ( ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑘 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  ( ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑚 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) |