Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn1.w |
|
2 |
|
simpl |
|
3 |
2
|
anim1i |
|
4 |
3
|
adantr |
|
5 |
|
simpr |
|
6 |
5
|
adantr |
|
7 |
6
|
anim1i |
|
8 |
1
|
eleclclwwlknlem1 |
|
9 |
4 7 8
|
sylc |
|
10 |
|
eqid |
|
11 |
10
|
clwwlknbp |
|
12 |
11 1
|
eleq2s |
|
13 |
|
fznn0sub2 |
|
14 |
|
oveq1 |
|
15 |
14
|
eleq1d |
|
16 |
13 15
|
syl5ibr |
|
17 |
16
|
adantl |
|
18 |
12 17
|
syl |
|
19 |
18
|
adantl |
|
20 |
19
|
com12 |
|
21 |
20
|
adantr |
|
22 |
21
|
imp |
|
23 |
22
|
adantr |
|
24 |
|
simpr |
|
25 |
24
|
ancomd |
|
26 |
25
|
adantr |
|
27 |
23 26
|
jca |
|
28 |
|
simpll |
|
29 |
|
oveq2 |
|
30 |
29
|
eleq2d |
|
31 |
30
|
eqcoms |
|
32 |
31
|
adantl |
|
33 |
32
|
biimpa |
|
34 |
28 33
|
jca |
|
35 |
34
|
ex |
|
36 |
12 35
|
syl |
|
37 |
36
|
adantl |
|
38 |
37
|
com12 |
|
39 |
38
|
adantr |
|
40 |
39
|
imp |
|
41 |
5
|
eqcomd |
|
42 |
41
|
adantr |
|
43 |
|
oveq1 |
|
44 |
43
|
eqcoms |
|
45 |
|
elfzelz |
|
46 |
|
2cshwid |
|
47 |
45 46
|
sylan2 |
|
48 |
44 47
|
sylan9eqr |
|
49 |
40 42 48
|
syl2anc |
|
50 |
49
|
eqcomd |
|
51 |
50
|
anim1i |
|
52 |
1
|
eleclclwwlknlem1 |
|
53 |
27 51 52
|
sylc |
|
54 |
9 53
|
impbida |
|