| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn1.w |  |-  W = ( N ClWWalksN G ) | 
						
							| 2 |  | simpl |  |-  ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) -> k e. ( 0 ... N ) ) | 
						
							| 3 | 2 | anim1i |  |-  ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) -> ( k e. ( 0 ... N ) /\ ( X e. W /\ x e. W ) ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) /\ E. m e. ( 0 ... N ) Y = ( x cyclShift m ) ) -> ( k e. ( 0 ... N ) /\ ( X e. W /\ x e. W ) ) ) | 
						
							| 5 |  | simpr |  |-  ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) -> X = ( x cyclShift k ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) -> X = ( x cyclShift k ) ) | 
						
							| 7 | 6 | anim1i |  |-  ( ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) /\ E. m e. ( 0 ... N ) Y = ( x cyclShift m ) ) -> ( X = ( x cyclShift k ) /\ E. m e. ( 0 ... N ) Y = ( x cyclShift m ) ) ) | 
						
							| 8 | 1 | eleclclwwlknlem1 |  |-  ( ( k e. ( 0 ... N ) /\ ( X e. W /\ x e. W ) ) -> ( ( X = ( x cyclShift k ) /\ E. m e. ( 0 ... N ) Y = ( x cyclShift m ) ) -> E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) ) | 
						
							| 9 | 4 7 8 | sylc |  |-  ( ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) /\ E. m e. ( 0 ... N ) Y = ( x cyclShift m ) ) -> E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) | 
						
							| 10 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 11 | 10 | clwwlknbp |  |-  ( x e. ( N ClWWalksN G ) -> ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) ) | 
						
							| 12 | 11 1 | eleq2s |  |-  ( x e. W -> ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) ) | 
						
							| 13 |  | fznn0sub2 |  |-  ( k e. ( 0 ... N ) -> ( N - k ) e. ( 0 ... N ) ) | 
						
							| 14 |  | oveq1 |  |-  ( ( # ` x ) = N -> ( ( # ` x ) - k ) = ( N - k ) ) | 
						
							| 15 | 14 | eleq1d |  |-  ( ( # ` x ) = N -> ( ( ( # ` x ) - k ) e. ( 0 ... N ) <-> ( N - k ) e. ( 0 ... N ) ) ) | 
						
							| 16 | 13 15 | imbitrrid |  |-  ( ( # ` x ) = N -> ( k e. ( 0 ... N ) -> ( ( # ` x ) - k ) e. ( 0 ... N ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( k e. ( 0 ... N ) -> ( ( # ` x ) - k ) e. ( 0 ... N ) ) ) | 
						
							| 18 | 12 17 | syl |  |-  ( x e. W -> ( k e. ( 0 ... N ) -> ( ( # ` x ) - k ) e. ( 0 ... N ) ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( X e. W /\ x e. W ) -> ( k e. ( 0 ... N ) -> ( ( # ` x ) - k ) e. ( 0 ... N ) ) ) | 
						
							| 20 | 19 | com12 |  |-  ( k e. ( 0 ... N ) -> ( ( X e. W /\ x e. W ) -> ( ( # ` x ) - k ) e. ( 0 ... N ) ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) -> ( ( X e. W /\ x e. W ) -> ( ( # ` x ) - k ) e. ( 0 ... N ) ) ) | 
						
							| 22 | 21 | imp |  |-  ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) -> ( ( # ` x ) - k ) e. ( 0 ... N ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) /\ E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) -> ( ( # ` x ) - k ) e. ( 0 ... N ) ) | 
						
							| 24 |  | simpr |  |-  ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) -> ( X e. W /\ x e. W ) ) | 
						
							| 25 | 24 | ancomd |  |-  ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) -> ( x e. W /\ X e. W ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) /\ E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) -> ( x e. W /\ X e. W ) ) | 
						
							| 27 | 23 26 | jca |  |-  ( ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) /\ E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) -> ( ( ( # ` x ) - k ) e. ( 0 ... N ) /\ ( x e. W /\ X e. W ) ) ) | 
						
							| 28 |  | simpll |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ k e. ( 0 ... N ) ) -> x e. Word ( Vtx ` G ) ) | 
						
							| 29 |  | oveq2 |  |-  ( N = ( # ` x ) -> ( 0 ... N ) = ( 0 ... ( # ` x ) ) ) | 
						
							| 30 | 29 | eleq2d |  |-  ( N = ( # ` x ) -> ( k e. ( 0 ... N ) <-> k e. ( 0 ... ( # ` x ) ) ) ) | 
						
							| 31 | 30 | eqcoms |  |-  ( ( # ` x ) = N -> ( k e. ( 0 ... N ) <-> k e. ( 0 ... ( # ` x ) ) ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( k e. ( 0 ... N ) <-> k e. ( 0 ... ( # ` x ) ) ) ) | 
						
							| 33 | 32 | biimpa |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ k e. ( 0 ... N ) ) -> k e. ( 0 ... ( # ` x ) ) ) | 
						
							| 34 | 28 33 | jca |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ k e. ( 0 ... N ) ) -> ( x e. Word ( Vtx ` G ) /\ k e. ( 0 ... ( # ` x ) ) ) ) | 
						
							| 35 | 34 | ex |  |-  ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( k e. ( 0 ... N ) -> ( x e. Word ( Vtx ` G ) /\ k e. ( 0 ... ( # ` x ) ) ) ) ) | 
						
							| 36 | 12 35 | syl |  |-  ( x e. W -> ( k e. ( 0 ... N ) -> ( x e. Word ( Vtx ` G ) /\ k e. ( 0 ... ( # ` x ) ) ) ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( X e. W /\ x e. W ) -> ( k e. ( 0 ... N ) -> ( x e. Word ( Vtx ` G ) /\ k e. ( 0 ... ( # ` x ) ) ) ) ) | 
						
							| 38 | 37 | com12 |  |-  ( k e. ( 0 ... N ) -> ( ( X e. W /\ x e. W ) -> ( x e. Word ( Vtx ` G ) /\ k e. ( 0 ... ( # ` x ) ) ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) -> ( ( X e. W /\ x e. W ) -> ( x e. Word ( Vtx ` G ) /\ k e. ( 0 ... ( # ` x ) ) ) ) ) | 
						
							| 40 | 39 | imp |  |-  ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) -> ( x e. Word ( Vtx ` G ) /\ k e. ( 0 ... ( # ` x ) ) ) ) | 
						
							| 41 | 5 | eqcomd |  |-  ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) -> ( x cyclShift k ) = X ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) -> ( x cyclShift k ) = X ) | 
						
							| 43 |  | oveq1 |  |-  ( X = ( x cyclShift k ) -> ( X cyclShift ( ( # ` x ) - k ) ) = ( ( x cyclShift k ) cyclShift ( ( # ` x ) - k ) ) ) | 
						
							| 44 | 43 | eqcoms |  |-  ( ( x cyclShift k ) = X -> ( X cyclShift ( ( # ` x ) - k ) ) = ( ( x cyclShift k ) cyclShift ( ( # ` x ) - k ) ) ) | 
						
							| 45 |  | elfzelz |  |-  ( k e. ( 0 ... ( # ` x ) ) -> k e. ZZ ) | 
						
							| 46 |  | 2cshwid |  |-  ( ( x e. Word ( Vtx ` G ) /\ k e. ZZ ) -> ( ( x cyclShift k ) cyclShift ( ( # ` x ) - k ) ) = x ) | 
						
							| 47 | 45 46 | sylan2 |  |-  ( ( x e. Word ( Vtx ` G ) /\ k e. ( 0 ... ( # ` x ) ) ) -> ( ( x cyclShift k ) cyclShift ( ( # ` x ) - k ) ) = x ) | 
						
							| 48 | 44 47 | sylan9eqr |  |-  ( ( ( x e. Word ( Vtx ` G ) /\ k e. ( 0 ... ( # ` x ) ) ) /\ ( x cyclShift k ) = X ) -> ( X cyclShift ( ( # ` x ) - k ) ) = x ) | 
						
							| 49 | 40 42 48 | syl2anc |  |-  ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) -> ( X cyclShift ( ( # ` x ) - k ) ) = x ) | 
						
							| 50 | 49 | eqcomd |  |-  ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) -> x = ( X cyclShift ( ( # ` x ) - k ) ) ) | 
						
							| 51 | 50 | anim1i |  |-  ( ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) /\ E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) -> ( x = ( X cyclShift ( ( # ` x ) - k ) ) /\ E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) ) | 
						
							| 52 | 1 | eleclclwwlknlem1 |  |-  ( ( ( ( # ` x ) - k ) e. ( 0 ... N ) /\ ( x e. W /\ X e. W ) ) -> ( ( x = ( X cyclShift ( ( # ` x ) - k ) ) /\ E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) -> E. m e. ( 0 ... N ) Y = ( x cyclShift m ) ) ) | 
						
							| 53 | 27 51 52 | sylc |  |-  ( ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) /\ E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) -> E. m e. ( 0 ... N ) Y = ( x cyclShift m ) ) | 
						
							| 54 | 9 53 | impbida |  |-  ( ( ( k e. ( 0 ... N ) /\ X = ( x cyclShift k ) ) /\ ( X e. W /\ x e. W ) ) -> ( E. m e. ( 0 ... N ) Y = ( x cyclShift m ) <-> E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) ) |