| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn1.w |  |-  W = ( N ClWWalksN G ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 2 | clwwlknbp |  |-  ( Y e. ( N ClWWalksN G ) -> ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) ) | 
						
							| 4 | 3 1 | eleq2s |  |-  ( Y e. W -> ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( X e. W /\ Y e. W ) -> ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) -> ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) ) | 
						
							| 8 |  | simpl |  |-  ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) -> K e. ( 0 ... N ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> K e. ( 0 ... N ) ) | 
						
							| 10 |  | simpl |  |-  ( ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) -> X = ( Y cyclShift K ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> X = ( Y cyclShift K ) ) | 
						
							| 12 |  | simprr |  |-  ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) | 
						
							| 13 | 9 11 12 | 3jca |  |-  ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> ( K e. ( 0 ... N ) /\ X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) | 
						
							| 14 |  | 2cshwcshw |  |-  ( ( Y e. Word ( Vtx ` G ) /\ ( # ` Y ) = N ) -> ( ( K e. ( 0 ... N ) /\ X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) | 
						
							| 15 | 7 13 14 | sylc |  |-  ( ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) /\ ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) | 
						
							| 16 | 15 | ex |  |-  ( ( K e. ( 0 ... N ) /\ ( X e. W /\ Y e. W ) ) -> ( ( X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) |