| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difelfznle |  |-  ( ( K e. ( 0 ... N ) /\ m e. ( 0 ... N ) /\ -. K <_ m ) -> ( ( m + N ) - K ) e. ( 0 ... N ) ) | 
						
							| 2 | 1 | 3exp |  |-  ( K e. ( 0 ... N ) -> ( m e. ( 0 ... N ) -> ( -. K <_ m -> ( ( m + N ) - K ) e. ( 0 ... N ) ) ) ) | 
						
							| 3 | 2 | ad2antrr |  |-  ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) -> ( m e. ( 0 ... N ) -> ( -. K <_ m -> ( ( m + N ) - K ) e. ( 0 ... N ) ) ) ) | 
						
							| 4 | 3 | imp |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) -> ( -. K <_ m -> ( ( m + N ) - K ) e. ( 0 ... N ) ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) -> ( -. K <_ m -> ( ( m + N ) - K ) e. ( 0 ... N ) ) ) | 
						
							| 6 | 5 | com12 |  |-  ( -. K <_ m -> ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) -> ( ( m + N ) - K ) e. ( 0 ... N ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( -. m = 0 /\ -. K <_ m ) -> ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) -> ( ( m + N ) - K ) e. ( 0 ... N ) ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( ( -. m = 0 /\ -. K <_ m ) /\ ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) ) -> ( ( m + N ) - K ) e. ( 0 ... N ) ) | 
						
							| 9 |  | simprl |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> Y e. Word V ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) -> Y e. Word V ) | 
						
							| 11 |  | elfzelz |  |-  ( K e. ( 0 ... N ) -> K e. ZZ ) | 
						
							| 12 | 11 | adantr |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> K e. ZZ ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) -> K e. ZZ ) | 
						
							| 14 |  | elfz2 |  |-  ( K e. ( 0 ... N ) <-> ( ( 0 e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( 0 <_ K /\ K <_ N ) ) ) | 
						
							| 15 |  | zaddcl |  |-  ( ( m e. ZZ /\ N e. ZZ ) -> ( m + N ) e. ZZ ) | 
						
							| 16 | 15 | adantrr |  |-  ( ( m e. ZZ /\ ( N e. ZZ /\ K e. ZZ ) ) -> ( m + N ) e. ZZ ) | 
						
							| 17 |  | simprr |  |-  ( ( m e. ZZ /\ ( N e. ZZ /\ K e. ZZ ) ) -> K e. ZZ ) | 
						
							| 18 | 16 17 | zsubcld |  |-  ( ( m e. ZZ /\ ( N e. ZZ /\ K e. ZZ ) ) -> ( ( m + N ) - K ) e. ZZ ) | 
						
							| 19 | 18 | ex |  |-  ( m e. ZZ -> ( ( N e. ZZ /\ K e. ZZ ) -> ( ( m + N ) - K ) e. ZZ ) ) | 
						
							| 20 |  | elfzelz |  |-  ( m e. ( 0 ... N ) -> m e. ZZ ) | 
						
							| 21 | 19 20 | syl11 |  |-  ( ( N e. ZZ /\ K e. ZZ ) -> ( m e. ( 0 ... N ) -> ( ( m + N ) - K ) e. ZZ ) ) | 
						
							| 22 | 21 | 3adant1 |  |-  ( ( 0 e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( m e. ( 0 ... N ) -> ( ( m + N ) - K ) e. ZZ ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( 0 e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( 0 <_ K /\ K <_ N ) ) -> ( m e. ( 0 ... N ) -> ( ( m + N ) - K ) e. ZZ ) ) | 
						
							| 24 | 14 23 | sylbi |  |-  ( K e. ( 0 ... N ) -> ( m e. ( 0 ... N ) -> ( ( m + N ) - K ) e. ZZ ) ) | 
						
							| 25 | 24 | ad2antrr |  |-  ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) -> ( m e. ( 0 ... N ) -> ( ( m + N ) - K ) e. ZZ ) ) | 
						
							| 26 | 25 | imp |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) -> ( ( m + N ) - K ) e. ZZ ) | 
						
							| 27 |  | 2cshw |  |-  ( ( Y e. Word V /\ K e. ZZ /\ ( ( m + N ) - K ) e. ZZ ) -> ( ( Y cyclShift K ) cyclShift ( ( m + N ) - K ) ) = ( Y cyclShift ( K + ( ( m + N ) - K ) ) ) ) | 
						
							| 28 | 10 13 26 27 | syl3anc |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) -> ( ( Y cyclShift K ) cyclShift ( ( m + N ) - K ) ) = ( Y cyclShift ( K + ( ( m + N ) - K ) ) ) ) | 
						
							| 29 | 17 18 | zaddcld |  |-  ( ( m e. ZZ /\ ( N e. ZZ /\ K e. ZZ ) ) -> ( K + ( ( m + N ) - K ) ) e. ZZ ) | 
						
							| 30 | 29 | ex |  |-  ( m e. ZZ -> ( ( N e. ZZ /\ K e. ZZ ) -> ( K + ( ( m + N ) - K ) ) e. ZZ ) ) | 
						
							| 31 | 30 20 | syl11 |  |-  ( ( N e. ZZ /\ K e. ZZ ) -> ( m e. ( 0 ... N ) -> ( K + ( ( m + N ) - K ) ) e. ZZ ) ) | 
						
							| 32 | 31 | 3adant1 |  |-  ( ( 0 e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( m e. ( 0 ... N ) -> ( K + ( ( m + N ) - K ) ) e. ZZ ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( 0 e. ZZ /\ N e. ZZ /\ K e. ZZ ) /\ ( 0 <_ K /\ K <_ N ) ) -> ( m e. ( 0 ... N ) -> ( K + ( ( m + N ) - K ) ) e. ZZ ) ) | 
						
							| 34 | 14 33 | sylbi |  |-  ( K e. ( 0 ... N ) -> ( m e. ( 0 ... N ) -> ( K + ( ( m + N ) - K ) ) e. ZZ ) ) | 
						
							| 35 | 34 | ad2antrr |  |-  ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) -> ( m e. ( 0 ... N ) -> ( K + ( ( m + N ) - K ) ) e. ZZ ) ) | 
						
							| 36 | 35 | imp |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) -> ( K + ( ( m + N ) - K ) ) e. ZZ ) | 
						
							| 37 |  | cshwsublen |  |-  ( ( Y e. Word V /\ ( K + ( ( m + N ) - K ) ) e. ZZ ) -> ( Y cyclShift ( K + ( ( m + N ) - K ) ) ) = ( Y cyclShift ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) ) ) | 
						
							| 38 | 10 36 37 | syl2anc |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) -> ( Y cyclShift ( K + ( ( m + N ) - K ) ) ) = ( Y cyclShift ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) ) ) | 
						
							| 39 | 28 38 | eqtrd |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) -> ( ( Y cyclShift K ) cyclShift ( ( m + N ) - K ) ) = ( Y cyclShift ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) ) ) | 
						
							| 40 |  | elfz2nn0 |  |-  ( K e. ( 0 ... N ) <-> ( K e. NN0 /\ N e. NN0 /\ K <_ N ) ) | 
						
							| 41 |  | nn0cn |  |-  ( m e. NN0 -> m e. CC ) | 
						
							| 42 |  | nn0cn |  |-  ( K e. NN0 -> K e. CC ) | 
						
							| 43 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 44 | 42 43 | anim12i |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( K e. CC /\ N e. CC ) ) | 
						
							| 45 |  | simprl |  |-  ( ( m e. CC /\ ( K e. CC /\ N e. CC ) ) -> K e. CC ) | 
						
							| 46 |  | addcl |  |-  ( ( m e. CC /\ N e. CC ) -> ( m + N ) e. CC ) | 
						
							| 47 | 46 | adantrl |  |-  ( ( m e. CC /\ ( K e. CC /\ N e. CC ) ) -> ( m + N ) e. CC ) | 
						
							| 48 | 45 47 | pncan3d |  |-  ( ( m e. CC /\ ( K e. CC /\ N e. CC ) ) -> ( K + ( ( m + N ) - K ) ) = ( m + N ) ) | 
						
							| 49 | 48 | oveq1d |  |-  ( ( m e. CC /\ ( K e. CC /\ N e. CC ) ) -> ( ( K + ( ( m + N ) - K ) ) - N ) = ( ( m + N ) - N ) ) | 
						
							| 50 |  | pncan |  |-  ( ( m e. CC /\ N e. CC ) -> ( ( m + N ) - N ) = m ) | 
						
							| 51 | 50 | adantrl |  |-  ( ( m e. CC /\ ( K e. CC /\ N e. CC ) ) -> ( ( m + N ) - N ) = m ) | 
						
							| 52 | 49 51 | eqtrd |  |-  ( ( m e. CC /\ ( K e. CC /\ N e. CC ) ) -> ( ( K + ( ( m + N ) - K ) ) - N ) = m ) | 
						
							| 53 | 41 44 52 | syl2an |  |-  ( ( m e. NN0 /\ ( K e. NN0 /\ N e. NN0 ) ) -> ( ( K + ( ( m + N ) - K ) ) - N ) = m ) | 
						
							| 54 | 53 | ex |  |-  ( m e. NN0 -> ( ( K e. NN0 /\ N e. NN0 ) -> ( ( K + ( ( m + N ) - K ) ) - N ) = m ) ) | 
						
							| 55 |  | elfznn0 |  |-  ( m e. ( 0 ... N ) -> m e. NN0 ) | 
						
							| 56 | 54 55 | syl11 |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - N ) = m ) ) | 
						
							| 57 | 56 | 3adant3 |  |-  ( ( K e. NN0 /\ N e. NN0 /\ K <_ N ) -> ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - N ) = m ) ) | 
						
							| 58 | 40 57 | sylbi |  |-  ( K e. ( 0 ... N ) -> ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - N ) = m ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - N ) = m ) ) | 
						
							| 60 |  | oveq2 |  |-  ( ( # ` Y ) = N -> ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) = ( ( K + ( ( m + N ) - K ) ) - N ) ) | 
						
							| 61 | 60 | eqeq1d |  |-  ( ( # ` Y ) = N -> ( ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) = m <-> ( ( K + ( ( m + N ) - K ) ) - N ) = m ) ) | 
						
							| 62 | 61 | imbi2d |  |-  ( ( # ` Y ) = N -> ( ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) = m ) <-> ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - N ) = m ) ) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( Y e. Word V /\ ( # ` Y ) = N ) -> ( ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) = m ) <-> ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - N ) = m ) ) ) | 
						
							| 64 | 63 | adantl |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> ( ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) = m ) <-> ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - N ) = m ) ) ) | 
						
							| 65 | 59 64 | mpbird |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) = m ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) -> ( m e. ( 0 ... N ) -> ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) = m ) ) | 
						
							| 67 | 66 | imp |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) -> ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) = m ) | 
						
							| 68 | 67 | oveq2d |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) -> ( Y cyclShift ( ( K + ( ( m + N ) - K ) ) - ( # ` Y ) ) ) = ( Y cyclShift m ) ) | 
						
							| 69 | 39 68 | eqtr2d |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) -> ( Y cyclShift m ) = ( ( Y cyclShift K ) cyclShift ( ( m + N ) - K ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> ( Y cyclShift m ) = ( ( Y cyclShift K ) cyclShift ( ( m + N ) - K ) ) ) | 
						
							| 71 |  | oveq1 |  |-  ( X = ( Y cyclShift K ) -> ( X cyclShift ( ( m + N ) - K ) ) = ( ( Y cyclShift K ) cyclShift ( ( m + N ) - K ) ) ) | 
						
							| 72 | 71 | adantl |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> ( X cyclShift ( ( m + N ) - K ) ) = ( ( Y cyclShift K ) cyclShift ( ( m + N ) - K ) ) ) | 
						
							| 73 | 70 72 | eqtr4d |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) /\ m e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> ( Y cyclShift m ) = ( X cyclShift ( ( m + N ) - K ) ) ) | 
						
							| 74 | 73 | exp41 |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> ( ( -. m = 0 /\ -. K <_ m ) -> ( m e. ( 0 ... N ) -> ( X = ( Y cyclShift K ) -> ( Y cyclShift m ) = ( X cyclShift ( ( m + N ) - K ) ) ) ) ) ) | 
						
							| 75 | 74 | com24 |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> ( X = ( Y cyclShift K ) -> ( m e. ( 0 ... N ) -> ( ( -. m = 0 /\ -. K <_ m ) -> ( Y cyclShift m ) = ( X cyclShift ( ( m + N ) - K ) ) ) ) ) ) | 
						
							| 76 | 75 | imp41 |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) -> ( Y cyclShift m ) = ( X cyclShift ( ( m + N ) - K ) ) ) | 
						
							| 77 | 76 | eqeq2d |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) -> ( Z = ( Y cyclShift m ) <-> Z = ( X cyclShift ( ( m + N ) - K ) ) ) ) | 
						
							| 78 | 77 | biimpd |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ ( -. m = 0 /\ -. K <_ m ) ) -> ( Z = ( Y cyclShift m ) -> Z = ( X cyclShift ( ( m + N ) - K ) ) ) ) | 
						
							| 79 | 78 | impancom |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) -> ( ( -. m = 0 /\ -. K <_ m ) -> Z = ( X cyclShift ( ( m + N ) - K ) ) ) ) | 
						
							| 80 | 79 | impcom |  |-  ( ( ( -. m = 0 /\ -. K <_ m ) /\ ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) ) -> Z = ( X cyclShift ( ( m + N ) - K ) ) ) | 
						
							| 81 |  | oveq2 |  |-  ( n = ( ( m + N ) - K ) -> ( X cyclShift n ) = ( X cyclShift ( ( m + N ) - K ) ) ) | 
						
							| 82 | 81 | rspceeqv |  |-  ( ( ( ( m + N ) - K ) e. ( 0 ... N ) /\ Z = ( X cyclShift ( ( m + N ) - K ) ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) | 
						
							| 83 | 8 80 82 | syl2anc |  |-  ( ( ( -. m = 0 /\ -. K <_ m ) /\ ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) | 
						
							| 84 | 83 | exp31 |  |-  ( -. m = 0 -> ( -. K <_ m -> ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) | 
						
							| 85 |  | oveq2 |  |-  ( m = 0 -> ( Y cyclShift m ) = ( Y cyclShift 0 ) ) | 
						
							| 86 | 85 | eqeq2d |  |-  ( m = 0 -> ( Z = ( Y cyclShift m ) <-> Z = ( Y cyclShift 0 ) ) ) | 
						
							| 87 |  | cshw0 |  |-  ( Y e. Word V -> ( Y cyclShift 0 ) = Y ) | 
						
							| 88 | 87 | adantr |  |-  ( ( Y e. Word V /\ ( # ` Y ) = N ) -> ( Y cyclShift 0 ) = Y ) | 
						
							| 89 | 88 | eqeq2d |  |-  ( ( Y e. Word V /\ ( # ` Y ) = N ) -> ( Z = ( Y cyclShift 0 ) <-> Z = Y ) ) | 
						
							| 90 |  | fznn0sub2 |  |-  ( K e. ( 0 ... N ) -> ( N - K ) e. ( 0 ... N ) ) | 
						
							| 91 | 90 | adantl |  |-  ( ( ( Y e. Word V /\ ( # ` Y ) = N ) /\ K e. ( 0 ... N ) ) -> ( N - K ) e. ( 0 ... N ) ) | 
						
							| 92 |  | oveq1 |  |-  ( ( # ` Y ) = N -> ( ( # ` Y ) - K ) = ( N - K ) ) | 
						
							| 93 | 92 | eleq1d |  |-  ( ( # ` Y ) = N -> ( ( ( # ` Y ) - K ) e. ( 0 ... N ) <-> ( N - K ) e. ( 0 ... N ) ) ) | 
						
							| 94 | 93 | ad2antlr |  |-  ( ( ( Y e. Word V /\ ( # ` Y ) = N ) /\ K e. ( 0 ... N ) ) -> ( ( ( # ` Y ) - K ) e. ( 0 ... N ) <-> ( N - K ) e. ( 0 ... N ) ) ) | 
						
							| 95 | 91 94 | mpbird |  |-  ( ( ( Y e. Word V /\ ( # ` Y ) = N ) /\ K e. ( 0 ... N ) ) -> ( ( # ` Y ) - K ) e. ( 0 ... N ) ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ( ( Y e. Word V /\ ( # ` Y ) = N ) /\ K e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> ( ( # ` Y ) - K ) e. ( 0 ... N ) ) | 
						
							| 97 |  | oveq1 |  |-  ( X = ( Y cyclShift K ) -> ( X cyclShift ( ( # ` Y ) - K ) ) = ( ( Y cyclShift K ) cyclShift ( ( # ` Y ) - K ) ) ) | 
						
							| 98 |  | simpl |  |-  ( ( Y e. Word V /\ ( # ` Y ) = N ) -> Y e. Word V ) | 
						
							| 99 |  | 2cshwid |  |-  ( ( Y e. Word V /\ K e. ZZ ) -> ( ( Y cyclShift K ) cyclShift ( ( # ` Y ) - K ) ) = Y ) | 
						
							| 100 | 98 11 99 | syl2an |  |-  ( ( ( Y e. Word V /\ ( # ` Y ) = N ) /\ K e. ( 0 ... N ) ) -> ( ( Y cyclShift K ) cyclShift ( ( # ` Y ) - K ) ) = Y ) | 
						
							| 101 | 97 100 | sylan9eqr |  |-  ( ( ( ( Y e. Word V /\ ( # ` Y ) = N ) /\ K e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> ( X cyclShift ( ( # ` Y ) - K ) ) = Y ) | 
						
							| 102 | 101 | eqcomd |  |-  ( ( ( ( Y e. Word V /\ ( # ` Y ) = N ) /\ K e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> Y = ( X cyclShift ( ( # ` Y ) - K ) ) ) | 
						
							| 103 |  | oveq2 |  |-  ( n = ( ( # ` Y ) - K ) -> ( X cyclShift n ) = ( X cyclShift ( ( # ` Y ) - K ) ) ) | 
						
							| 104 | 103 | rspceeqv |  |-  ( ( ( ( # ` Y ) - K ) e. ( 0 ... N ) /\ Y = ( X cyclShift ( ( # ` Y ) - K ) ) ) -> E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) | 
						
							| 105 | 96 102 104 | syl2anc |  |-  ( ( ( ( Y e. Word V /\ ( # ` Y ) = N ) /\ K e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ( ( ( Y e. Word V /\ ( # ` Y ) = N ) /\ K e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) /\ Z = Y ) -> E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) | 
						
							| 107 |  | eqeq1 |  |-  ( Z = Y -> ( Z = ( X cyclShift n ) <-> Y = ( X cyclShift n ) ) ) | 
						
							| 108 | 107 | rexbidv |  |-  ( Z = Y -> ( E. n e. ( 0 ... N ) Z = ( X cyclShift n ) <-> E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) ) | 
						
							| 109 | 108 | adantl |  |-  ( ( ( ( ( Y e. Word V /\ ( # ` Y ) = N ) /\ K e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) /\ Z = Y ) -> ( E. n e. ( 0 ... N ) Z = ( X cyclShift n ) <-> E. n e. ( 0 ... N ) Y = ( X cyclShift n ) ) ) | 
						
							| 110 | 106 109 | mpbird |  |-  ( ( ( ( ( Y e. Word V /\ ( # ` Y ) = N ) /\ K e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) /\ Z = Y ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) | 
						
							| 111 | 110 | exp41 |  |-  ( ( Y e. Word V /\ ( # ` Y ) = N ) -> ( K e. ( 0 ... N ) -> ( X = ( Y cyclShift K ) -> ( Z = Y -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) ) | 
						
							| 112 | 111 | com24 |  |-  ( ( Y e. Word V /\ ( # ` Y ) = N ) -> ( Z = Y -> ( X = ( Y cyclShift K ) -> ( K e. ( 0 ... N ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) ) | 
						
							| 113 | 89 112 | sylbid |  |-  ( ( Y e. Word V /\ ( # ` Y ) = N ) -> ( Z = ( Y cyclShift 0 ) -> ( X = ( Y cyclShift K ) -> ( K e. ( 0 ... N ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) ) | 
						
							| 114 | 113 | com24 |  |-  ( ( Y e. Word V /\ ( # ` Y ) = N ) -> ( K e. ( 0 ... N ) -> ( X = ( Y cyclShift K ) -> ( Z = ( Y cyclShift 0 ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) ) | 
						
							| 115 | 114 | impcom |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> ( X = ( Y cyclShift K ) -> ( Z = ( Y cyclShift 0 ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) | 
						
							| 116 | 115 | com13 |  |-  ( Z = ( Y cyclShift 0 ) -> ( X = ( Y cyclShift K ) -> ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) | 
						
							| 117 | 116 | a1d |  |-  ( Z = ( Y cyclShift 0 ) -> ( m e. ( 0 ... N ) -> ( X = ( Y cyclShift K ) -> ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) ) | 
						
							| 118 | 86 117 | biimtrdi |  |-  ( m = 0 -> ( Z = ( Y cyclShift m ) -> ( m e. ( 0 ... N ) -> ( X = ( Y cyclShift K ) -> ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) ) ) | 
						
							| 119 | 118 | com24 |  |-  ( m = 0 -> ( X = ( Y cyclShift K ) -> ( m e. ( 0 ... N ) -> ( Z = ( Y cyclShift m ) -> ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) ) ) | 
						
							| 120 | 119 | com15 |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> ( X = ( Y cyclShift K ) -> ( m e. ( 0 ... N ) -> ( Z = ( Y cyclShift m ) -> ( m = 0 -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) ) ) | 
						
							| 121 | 120 | imp41 |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) -> ( m = 0 -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) | 
						
							| 122 | 121 | com12 |  |-  ( m = 0 -> ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) | 
						
							| 123 |  | difelfzle |  |-  ( ( K e. ( 0 ... N ) /\ m e. ( 0 ... N ) /\ K <_ m ) -> ( m - K ) e. ( 0 ... N ) ) | 
						
							| 124 | 123 | 3exp |  |-  ( K e. ( 0 ... N ) -> ( m e. ( 0 ... N ) -> ( K <_ m -> ( m - K ) e. ( 0 ... N ) ) ) ) | 
						
							| 125 | 124 | ad2antrr |  |-  ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) -> ( m e. ( 0 ... N ) -> ( K <_ m -> ( m - K ) e. ( 0 ... N ) ) ) ) | 
						
							| 126 | 125 | imp |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) -> ( K <_ m -> ( m - K ) e. ( 0 ... N ) ) ) | 
						
							| 127 | 126 | adantr |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) -> ( K <_ m -> ( m - K ) e. ( 0 ... N ) ) ) | 
						
							| 128 | 127 | impcom |  |-  ( ( K <_ m /\ ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) ) -> ( m - K ) e. ( 0 ... N ) ) | 
						
							| 129 | 9 | ad2antrr |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) -> Y e. Word V ) | 
						
							| 130 | 12 | ad2antrr |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) -> K e. ZZ ) | 
						
							| 131 |  | zsubcl |  |-  ( ( m e. ZZ /\ K e. ZZ ) -> ( m - K ) e. ZZ ) | 
						
							| 132 | 131 | ex |  |-  ( m e. ZZ -> ( K e. ZZ -> ( m - K ) e. ZZ ) ) | 
						
							| 133 | 20 11 132 | syl2imc |  |-  ( K e. ( 0 ... N ) -> ( m e. ( 0 ... N ) -> ( m - K ) e. ZZ ) ) | 
						
							| 134 | 133 | ad2antrr |  |-  ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) -> ( m e. ( 0 ... N ) -> ( m - K ) e. ZZ ) ) | 
						
							| 135 | 134 | imp |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) -> ( m - K ) e. ZZ ) | 
						
							| 136 |  | 2cshw |  |-  ( ( Y e. Word V /\ K e. ZZ /\ ( m - K ) e. ZZ ) -> ( ( Y cyclShift K ) cyclShift ( m - K ) ) = ( Y cyclShift ( K + ( m - K ) ) ) ) | 
						
							| 137 | 129 130 135 136 | syl3anc |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) -> ( ( Y cyclShift K ) cyclShift ( m - K ) ) = ( Y cyclShift ( K + ( m - K ) ) ) ) | 
						
							| 138 |  | zcn |  |-  ( K e. ZZ -> K e. CC ) | 
						
							| 139 | 20 | zcnd |  |-  ( m e. ( 0 ... N ) -> m e. CC ) | 
						
							| 140 |  | pncan3 |  |-  ( ( K e. CC /\ m e. CC ) -> ( K + ( m - K ) ) = m ) | 
						
							| 141 | 138 139 140 | syl2anr |  |-  ( ( m e. ( 0 ... N ) /\ K e. ZZ ) -> ( K + ( m - K ) ) = m ) | 
						
							| 142 | 141 | ex |  |-  ( m e. ( 0 ... N ) -> ( K e. ZZ -> ( K + ( m - K ) ) = m ) ) | 
						
							| 143 | 11 142 | syl5com |  |-  ( K e. ( 0 ... N ) -> ( m e. ( 0 ... N ) -> ( K + ( m - K ) ) = m ) ) | 
						
							| 144 | 143 | ad2antrr |  |-  ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) -> ( m e. ( 0 ... N ) -> ( K + ( m - K ) ) = m ) ) | 
						
							| 145 | 144 | imp |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) -> ( K + ( m - K ) ) = m ) | 
						
							| 146 | 145 | oveq2d |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) -> ( Y cyclShift ( K + ( m - K ) ) ) = ( Y cyclShift m ) ) | 
						
							| 147 | 137 146 | eqtr2d |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) -> ( Y cyclShift m ) = ( ( Y cyclShift K ) cyclShift ( m - K ) ) ) | 
						
							| 148 | 147 | adantr |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> ( Y cyclShift m ) = ( ( Y cyclShift K ) cyclShift ( m - K ) ) ) | 
						
							| 149 |  | oveq1 |  |-  ( X = ( Y cyclShift K ) -> ( X cyclShift ( m - K ) ) = ( ( Y cyclShift K ) cyclShift ( m - K ) ) ) | 
						
							| 150 | 149 | eqeq2d |  |-  ( X = ( Y cyclShift K ) -> ( ( Y cyclShift m ) = ( X cyclShift ( m - K ) ) <-> ( Y cyclShift m ) = ( ( Y cyclShift K ) cyclShift ( m - K ) ) ) ) | 
						
							| 151 | 150 | adantl |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> ( ( Y cyclShift m ) = ( X cyclShift ( m - K ) ) <-> ( Y cyclShift m ) = ( ( Y cyclShift K ) cyclShift ( m - K ) ) ) ) | 
						
							| 152 | 148 151 | mpbird |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> ( Y cyclShift m ) = ( X cyclShift ( m - K ) ) ) | 
						
							| 153 | 152 | eqeq2d |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> ( Z = ( Y cyclShift m ) <-> Z = ( X cyclShift ( m - K ) ) ) ) | 
						
							| 154 | 153 | biimpd |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ K <_ m ) /\ m e. ( 0 ... N ) ) /\ X = ( Y cyclShift K ) ) -> ( Z = ( Y cyclShift m ) -> Z = ( X cyclShift ( m - K ) ) ) ) | 
						
							| 155 | 154 | exp41 |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> ( K <_ m -> ( m e. ( 0 ... N ) -> ( X = ( Y cyclShift K ) -> ( Z = ( Y cyclShift m ) -> Z = ( X cyclShift ( m - K ) ) ) ) ) ) ) | 
						
							| 156 | 155 | com24 |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> ( X = ( Y cyclShift K ) -> ( m e. ( 0 ... N ) -> ( K <_ m -> ( Z = ( Y cyclShift m ) -> Z = ( X cyclShift ( m - K ) ) ) ) ) ) ) | 
						
							| 157 | 156 | imp31 |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) -> ( K <_ m -> ( Z = ( Y cyclShift m ) -> Z = ( X cyclShift ( m - K ) ) ) ) ) | 
						
							| 158 | 157 | com23 |  |-  ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) -> ( Z = ( Y cyclShift m ) -> ( K <_ m -> Z = ( X cyclShift ( m - K ) ) ) ) ) | 
						
							| 159 | 158 | imp |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) -> ( K <_ m -> Z = ( X cyclShift ( m - K ) ) ) ) | 
						
							| 160 | 159 | impcom |  |-  ( ( K <_ m /\ ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) ) -> Z = ( X cyclShift ( m - K ) ) ) | 
						
							| 161 |  | oveq2 |  |-  ( n = ( m - K ) -> ( X cyclShift n ) = ( X cyclShift ( m - K ) ) ) | 
						
							| 162 | 161 | rspceeqv |  |-  ( ( ( m - K ) e. ( 0 ... N ) /\ Z = ( X cyclShift ( m - K ) ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) | 
						
							| 163 | 128 160 162 | syl2anc |  |-  ( ( K <_ m /\ ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) | 
						
							| 164 | 163 | ex |  |-  ( K <_ m -> ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) | 
						
							| 165 | 84 122 164 | pm2.61ii |  |-  ( ( ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) /\ m e. ( 0 ... N ) ) /\ Z = ( Y cyclShift m ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) | 
						
							| 166 | 165 | rexlimdva2 |  |-  ( ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) /\ X = ( Y cyclShift K ) ) -> ( E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) | 
						
							| 167 | 166 | ex |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> ( X = ( Y cyclShift K ) -> ( E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) | 
						
							| 168 | 167 | com23 |  |-  ( ( K e. ( 0 ... N ) /\ ( Y e. Word V /\ ( # ` Y ) = N ) ) -> ( E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) -> ( X = ( Y cyclShift K ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) | 
						
							| 169 | 168 | ex |  |-  ( K e. ( 0 ... N ) -> ( ( Y e. Word V /\ ( # ` Y ) = N ) -> ( E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) -> ( X = ( Y cyclShift K ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) ) | 
						
							| 170 | 169 | com24 |  |-  ( K e. ( 0 ... N ) -> ( X = ( Y cyclShift K ) -> ( E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) -> ( ( Y e. Word V /\ ( # ` Y ) = N ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) ) ) | 
						
							| 171 | 170 | 3imp |  |-  ( ( K e. ( 0 ... N ) /\ X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) -> ( ( Y e. Word V /\ ( # ` Y ) = N ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) | 
						
							| 172 | 171 | com12 |  |-  ( ( Y e. Word V /\ ( # ` Y ) = N ) -> ( ( K e. ( 0 ... N ) /\ X = ( Y cyclShift K ) /\ E. m e. ( 0 ... N ) Z = ( Y cyclShift m ) ) -> E. n e. ( 0 ... N ) Z = ( X cyclShift n ) ) ) |