| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difelfznle | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  𝑚  ∈  ( 0 ... 𝑁 )  ∧  ¬  𝐾  ≤  𝑚 )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 2 | 1 | 3exp | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ¬  𝐾  ≤  𝑚  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ¬  𝐾  ≤  𝑚  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 4 | 3 | imp | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( ¬  𝐾  ≤  𝑚  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ( ¬  𝐾  ≤  𝑚  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 6 | 5 | com12 | ⊢ ( ¬  𝐾  ≤  𝑚  →  ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 )  →  ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 8 | 7 | imp | ⊢ ( ( ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 )  ∧  ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 9 |  | simprl | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  𝑌  ∈  Word  𝑉 ) | 
						
							| 10 | 9 | ad2antrr | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  𝑌  ∈  Word  𝑉 ) | 
						
							| 11 |  | elfzelz | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  𝐾  ∈  ℤ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  𝐾  ∈  ℤ ) | 
						
							| 13 | 12 | ad2antrr | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  𝐾  ∈  ℤ ) | 
						
							| 14 |  | elfz2 | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  ↔  ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ )  ∧  ( 0  ≤  𝐾  ∧  𝐾  ≤  𝑁 ) ) ) | 
						
							| 15 |  | zaddcl | ⊢ ( ( 𝑚  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑚  +  𝑁 )  ∈  ℤ ) | 
						
							| 16 | 15 | adantrr | ⊢ ( ( 𝑚  ∈  ℤ  ∧  ( 𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ ) )  →  ( 𝑚  +  𝑁 )  ∈  ℤ ) | 
						
							| 17 |  | simprr | ⊢ ( ( 𝑚  ∈  ℤ  ∧  ( 𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ ) )  →  𝐾  ∈  ℤ ) | 
						
							| 18 | 16 17 | zsubcld | ⊢ ( ( 𝑚  ∈  ℤ  ∧  ( 𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ ) )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ℤ ) | 
						
							| 19 | 18 | ex | ⊢ ( 𝑚  ∈  ℤ  →  ( ( 𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ℤ ) ) | 
						
							| 20 |  | elfzelz | ⊢ ( 𝑚  ∈  ( 0 ... 𝑁 )  →  𝑚  ∈  ℤ ) | 
						
							| 21 | 19 20 | syl11 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ℤ ) ) | 
						
							| 22 | 21 | 3adant1 | ⊢ ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ℤ ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ )  ∧  ( 0  ≤  𝐾  ∧  𝐾  ≤  𝑁 ) )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ℤ ) ) | 
						
							| 24 | 14 23 | sylbi | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ℤ ) ) | 
						
							| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ℤ ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ℤ ) | 
						
							| 27 |  | 2cshw | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  𝐾  ∈  ℤ  ∧  ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ℤ )  →  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  =  ( 𝑌  cyclShift  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) ) | 
						
							| 28 | 10 13 26 27 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  =  ( 𝑌  cyclShift  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) ) | 
						
							| 29 | 17 18 | zaddcld | ⊢ ( ( 𝑚  ∈  ℤ  ∧  ( 𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ ) )  →  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  ∈  ℤ ) | 
						
							| 30 | 29 | ex | ⊢ ( 𝑚  ∈  ℤ  →  ( ( 𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  ∈  ℤ ) ) | 
						
							| 31 | 30 20 | syl11 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  ∈  ℤ ) ) | 
						
							| 32 | 31 | 3adant1 | ⊢ ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  ∈  ℤ ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐾  ∈  ℤ )  ∧  ( 0  ≤  𝐾  ∧  𝐾  ≤  𝑁 ) )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  ∈  ℤ ) ) | 
						
							| 34 | 14 33 | sylbi | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  ∈  ℤ ) ) | 
						
							| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  ∈  ℤ ) ) | 
						
							| 36 | 35 | imp | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  ∈  ℤ ) | 
						
							| 37 |  | cshwsublen | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  ∈  ℤ )  →  ( 𝑌  cyclShift  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) )  =  ( 𝑌  cyclShift  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) ) ) ) | 
						
							| 38 | 10 36 37 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑌  cyclShift  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) )  =  ( 𝑌  cyclShift  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) ) ) ) | 
						
							| 39 | 28 38 | eqtrd | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  =  ( 𝑌  cyclShift  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) ) ) ) | 
						
							| 40 |  | elfz2nn0 | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  ↔  ( 𝐾  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝐾  ≤  𝑁 ) ) | 
						
							| 41 |  | nn0cn | ⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ℂ ) | 
						
							| 42 |  | nn0cn | ⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℂ ) | 
						
							| 43 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 44 | 42 43 | anim12i | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐾  ∈  ℂ  ∧  𝑁  ∈  ℂ ) ) | 
						
							| 45 |  | simprl | ⊢ ( ( 𝑚  ∈  ℂ  ∧  ( 𝐾  ∈  ℂ  ∧  𝑁  ∈  ℂ ) )  →  𝐾  ∈  ℂ ) | 
						
							| 46 |  | addcl | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( 𝑚  +  𝑁 )  ∈  ℂ ) | 
						
							| 47 | 46 | adantrl | ⊢ ( ( 𝑚  ∈  ℂ  ∧  ( 𝐾  ∈  ℂ  ∧  𝑁  ∈  ℂ ) )  →  ( 𝑚  +  𝑁 )  ∈  ℂ ) | 
						
							| 48 | 45 47 | pncan3d | ⊢ ( ( 𝑚  ∈  ℂ  ∧  ( 𝐾  ∈  ℂ  ∧  𝑁  ∈  ℂ ) )  →  ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  =  ( 𝑚  +  𝑁 ) ) | 
						
							| 49 | 48 | oveq1d | ⊢ ( ( 𝑚  ∈  ℂ  ∧  ( 𝐾  ∈  ℂ  ∧  𝑁  ∈  ℂ ) )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  ( ( 𝑚  +  𝑁 )  −  𝑁 ) ) | 
						
							| 50 |  | pncan | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( ( 𝑚  +  𝑁 )  −  𝑁 )  =  𝑚 ) | 
						
							| 51 | 50 | adantrl | ⊢ ( ( 𝑚  ∈  ℂ  ∧  ( 𝐾  ∈  ℂ  ∧  𝑁  ∈  ℂ ) )  →  ( ( 𝑚  +  𝑁 )  −  𝑁 )  =  𝑚 ) | 
						
							| 52 | 49 51 | eqtrd | ⊢ ( ( 𝑚  ∈  ℂ  ∧  ( 𝐾  ∈  ℂ  ∧  𝑁  ∈  ℂ ) )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  𝑚 ) | 
						
							| 53 | 41 44 52 | syl2an | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝐾  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  𝑚 ) | 
						
							| 54 | 53 | ex | ⊢ ( 𝑚  ∈  ℕ0  →  ( ( 𝐾  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  𝑚 ) ) | 
						
							| 55 |  | elfznn0 | ⊢ ( 𝑚  ∈  ( 0 ... 𝑁 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 56 | 54 55 | syl11 | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  𝑚 ) ) | 
						
							| 57 | 56 | 3adant3 | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝐾  ≤  𝑁 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  𝑚 ) ) | 
						
							| 58 | 40 57 | sylbi | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  𝑚 ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  𝑚 ) ) | 
						
							| 60 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑌 )  =  𝑁  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) )  =  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 ) ) | 
						
							| 61 | 60 | eqeq1d | ⊢ ( ( ♯ ‘ 𝑌 )  =  𝑁  →  ( ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) )  =  𝑚  ↔  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  𝑚 ) ) | 
						
							| 62 | 61 | imbi2d | ⊢ ( ( ♯ ‘ 𝑌 )  =  𝑁  →  ( ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) )  =  𝑚 )  ↔  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  𝑚 ) ) ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ( ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) )  =  𝑚 )  ↔  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  𝑚 ) ) ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ( ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) )  =  𝑚 )  ↔  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  𝑁 )  =  𝑚 ) ) ) | 
						
							| 65 | 59 64 | mpbird | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) )  =  𝑚 ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) )  =  𝑚 ) ) | 
						
							| 67 | 66 | imp | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) )  =  𝑚 ) | 
						
							| 68 | 67 | oveq2d | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑌  cyclShift  ( ( 𝐾  +  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  −  ( ♯ ‘ 𝑌 ) ) )  =  ( 𝑌  cyclShift  𝑚 ) ) | 
						
							| 69 | 39 68 | eqtr2d | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑌  cyclShift  𝑚 )  =  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( 𝑌  cyclShift  𝑚 )  =  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) | 
						
							| 71 |  | oveq1 | ⊢ ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  =  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) )  =  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) | 
						
							| 73 | 70 72 | eqtr4d | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( 𝑌  cyclShift  𝑚 )  =  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) | 
						
							| 74 | 73 | exp41 | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ( ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑌  cyclShift  𝑚 )  =  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) ) ) ) | 
						
							| 75 | 74 | com24 | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 )  →  ( 𝑌  cyclShift  𝑚 )  =  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) ) ) ) | 
						
							| 76 | 75 | imp41 | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  →  ( 𝑌  cyclShift  𝑚 )  =  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) | 
						
							| 77 | 76 | eqeq2d | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  ↔  𝑍  =  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) ) | 
						
							| 78 | 77 | biimpd | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 ) )  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  𝑍  =  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) ) | 
						
							| 79 | 78 | impancom | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ( ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 )  →  𝑍  =  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) ) | 
						
							| 80 | 79 | impcom | ⊢ ( ( ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 )  ∧  ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  𝑍  =  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) | 
						
							| 81 |  | oveq2 | ⊢ ( 𝑛  =  ( ( 𝑚  +  𝑁 )  −  𝐾 )  →  ( 𝑋  cyclShift  𝑛 )  =  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) ) | 
						
							| 82 | 81 | rspceeqv | ⊢ ( ( ( ( 𝑚  +  𝑁 )  −  𝐾 )  ∈  ( 0 ... 𝑁 )  ∧  𝑍  =  ( 𝑋  cyclShift  ( ( 𝑚  +  𝑁 )  −  𝐾 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 83 | 8 80 82 | syl2anc | ⊢ ( ( ( ¬  𝑚  =  0  ∧  ¬  𝐾  ≤  𝑚 )  ∧  ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 84 | 83 | exp31 | ⊢ ( ¬  𝑚  =  0  →  ( ¬  𝐾  ≤  𝑚  →  ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 85 |  | oveq2 | ⊢ ( 𝑚  =  0  →  ( 𝑌  cyclShift  𝑚 )  =  ( 𝑌  cyclShift  0 ) ) | 
						
							| 86 | 85 | eqeq2d | ⊢ ( 𝑚  =  0  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  ↔  𝑍  =  ( 𝑌  cyclShift  0 ) ) ) | 
						
							| 87 |  | cshw0 | ⊢ ( 𝑌  ∈  Word  𝑉  →  ( 𝑌  cyclShift  0 )  =  𝑌 ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ( 𝑌  cyclShift  0 )  =  𝑌 ) | 
						
							| 89 | 88 | eqeq2d | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ( 𝑍  =  ( 𝑌  cyclShift  0 )  ↔  𝑍  =  𝑌 ) ) | 
						
							| 90 |  | fznn0sub2 | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 𝑁  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑁  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 92 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑌 )  =  𝑁  →  ( ( ♯ ‘ 𝑌 )  −  𝐾 )  =  ( 𝑁  −  𝐾 ) ) | 
						
							| 93 | 92 | eleq1d | ⊢ ( ( ♯ ‘ 𝑌 )  =  𝑁  →  ( ( ( ♯ ‘ 𝑌 )  −  𝐾 )  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑁  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 94 | 93 | ad2antlr | ⊢ ( ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ♯ ‘ 𝑌 )  −  𝐾 )  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑁  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 95 | 91 94 | mpbird | ⊢ ( ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  →  ( ( ♯ ‘ 𝑌 )  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( ( ♯ ‘ 𝑌 )  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 97 |  | oveq1 | ⊢ ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑌 )  −  𝐾 ) )  =  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( ( ♯ ‘ 𝑌 )  −  𝐾 ) ) ) | 
						
							| 98 |  | simpl | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  𝑌  ∈  Word  𝑉 ) | 
						
							| 99 |  | 2cshwid | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  𝐾  ∈  ℤ )  →  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( ( ♯ ‘ 𝑌 )  −  𝐾 ) )  =  𝑌 ) | 
						
							| 100 | 98 11 99 | syl2an | ⊢ ( ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( ( ♯ ‘ 𝑌 )  −  𝐾 ) )  =  𝑌 ) | 
						
							| 101 | 97 100 | sylan9eqr | ⊢ ( ( ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑌 )  −  𝐾 ) )  =  𝑌 ) | 
						
							| 102 | 101 | eqcomd | ⊢ ( ( ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  𝑌  =  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑌 )  −  𝐾 ) ) ) | 
						
							| 103 |  | oveq2 | ⊢ ( 𝑛  =  ( ( ♯ ‘ 𝑌 )  −  𝐾 )  →  ( 𝑋  cyclShift  𝑛 )  =  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑌 )  −  𝐾 ) ) ) | 
						
							| 104 | 103 | rspceeqv | ⊢ ( ( ( ( ♯ ‘ 𝑌 )  −  𝐾 )  ∈  ( 0 ... 𝑁 )  ∧  𝑌  =  ( 𝑋  cyclShift  ( ( ♯ ‘ 𝑌 )  −  𝐾 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 105 | 96 102 104 | syl2anc | ⊢ ( ( ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( ( ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑍  =  𝑌 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 107 |  | eqeq1 | ⊢ ( 𝑍  =  𝑌  →  ( 𝑍  =  ( 𝑋  cyclShift  𝑛 )  ↔  𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 108 | 107 | rexbidv | ⊢ ( 𝑍  =  𝑌  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 109 | 108 | adantl | ⊢ ( ( ( ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑍  =  𝑌 )  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 110 | 106 109 | mpbird | ⊢ ( ( ( ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  ∧  𝐾  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑍  =  𝑌 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 111 | 110 | exp41 | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑍  =  𝑌  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 112 | 111 | com24 | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ( 𝑍  =  𝑌  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 113 | 89 112 | sylbid | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ( 𝑍  =  ( 𝑌  cyclShift  0 )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 114 | 113 | com24 | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑍  =  ( 𝑌  cyclShift  0 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 115 | 114 | impcom | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑍  =  ( 𝑌  cyclShift  0 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 116 | 115 | com13 | ⊢ ( 𝑍  =  ( 𝑌  cyclShift  0 )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 117 | 116 | a1d | ⊢ ( 𝑍  =  ( 𝑌  cyclShift  0 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 118 | 86 117 | biimtrdi | ⊢ ( 𝑚  =  0  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) ) | 
						
							| 119 | 118 | com24 | ⊢ ( 𝑚  =  0  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) ) | 
						
							| 120 | 119 | com15 | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  ( 𝑚  =  0  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) ) | 
						
							| 121 | 120 | imp41 | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ( 𝑚  =  0  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 122 | 121 | com12 | ⊢ ( 𝑚  =  0  →  ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 123 |  | difelfzle | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝐾  ≤  𝑚 )  →  ( 𝑚  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 124 | 123 | 3exp | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝐾  ≤  𝑚  →  ( 𝑚  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 125 | 124 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝐾  ≤  𝑚  →  ( 𝑚  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 126 | 125 | imp | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐾  ≤  𝑚  →  ( 𝑚  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ( 𝐾  ≤  𝑚  →  ( 𝑚  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 128 | 127 | impcom | ⊢ ( ( 𝐾  ≤  𝑚  ∧  ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  ( 𝑚  −  𝐾 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 129 | 9 | ad2antrr | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  𝑌  ∈  Word  𝑉 ) | 
						
							| 130 | 12 | ad2antrr | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  𝐾  ∈  ℤ ) | 
						
							| 131 |  | zsubcl | ⊢ ( ( 𝑚  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( 𝑚  −  𝐾 )  ∈  ℤ ) | 
						
							| 132 | 131 | ex | ⊢ ( 𝑚  ∈  ℤ  →  ( 𝐾  ∈  ℤ  →  ( 𝑚  −  𝐾 )  ∈  ℤ ) ) | 
						
							| 133 | 20 11 132 | syl2imc | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝑚  −  𝐾 )  ∈  ℤ ) ) | 
						
							| 134 | 133 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝑚  −  𝐾 )  ∈  ℤ ) ) | 
						
							| 135 | 134 | imp | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑚  −  𝐾 )  ∈  ℤ ) | 
						
							| 136 |  | 2cshw | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  𝐾  ∈  ℤ  ∧  ( 𝑚  −  𝐾 )  ∈  ℤ )  →  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( 𝑚  −  𝐾 ) )  =  ( 𝑌  cyclShift  ( 𝐾  +  ( 𝑚  −  𝐾 ) ) ) ) | 
						
							| 137 | 129 130 135 136 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( 𝑚  −  𝐾 ) )  =  ( 𝑌  cyclShift  ( 𝐾  +  ( 𝑚  −  𝐾 ) ) ) ) | 
						
							| 138 |  | zcn | ⊢ ( 𝐾  ∈  ℤ  →  𝐾  ∈  ℂ ) | 
						
							| 139 | 20 | zcnd | ⊢ ( 𝑚  ∈  ( 0 ... 𝑁 )  →  𝑚  ∈  ℂ ) | 
						
							| 140 |  | pncan3 | ⊢ ( ( 𝐾  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( 𝐾  +  ( 𝑚  −  𝐾 ) )  =  𝑚 ) | 
						
							| 141 | 138 139 140 | syl2anr | ⊢ ( ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝐾  ∈  ℤ )  →  ( 𝐾  +  ( 𝑚  −  𝐾 ) )  =  𝑚 ) | 
						
							| 142 | 141 | ex | ⊢ ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝐾  ∈  ℤ  →  ( 𝐾  +  ( 𝑚  −  𝐾 ) )  =  𝑚 ) ) | 
						
							| 143 | 11 142 | syl5com | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝐾  +  ( 𝑚  −  𝐾 ) )  =  𝑚 ) ) | 
						
							| 144 | 143 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝐾  +  ( 𝑚  −  𝐾 ) )  =  𝑚 ) ) | 
						
							| 145 | 144 | imp | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐾  +  ( 𝑚  −  𝐾 ) )  =  𝑚 ) | 
						
							| 146 | 145 | oveq2d | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑌  cyclShift  ( 𝐾  +  ( 𝑚  −  𝐾 ) ) )  =  ( 𝑌  cyclShift  𝑚 ) ) | 
						
							| 147 | 137 146 | eqtr2d | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑌  cyclShift  𝑚 )  =  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( 𝑚  −  𝐾 ) ) ) | 
						
							| 148 | 147 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( 𝑌  cyclShift  𝑚 )  =  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( 𝑚  −  𝐾 ) ) ) | 
						
							| 149 |  | oveq1 | ⊢ ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) )  =  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( 𝑚  −  𝐾 ) ) ) | 
						
							| 150 | 149 | eqeq2d | ⊢ ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( ( 𝑌  cyclShift  𝑚 )  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) )  ↔  ( 𝑌  cyclShift  𝑚 )  =  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( 𝑚  −  𝐾 ) ) ) ) | 
						
							| 151 | 150 | adantl | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( ( 𝑌  cyclShift  𝑚 )  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) )  ↔  ( 𝑌  cyclShift  𝑚 )  =  ( ( 𝑌  cyclShift  𝐾 )  cyclShift  ( 𝑚  −  𝐾 ) ) ) ) | 
						
							| 152 | 148 151 | mpbird | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( 𝑌  cyclShift  𝑚 )  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) ) ) | 
						
							| 153 | 152 | eqeq2d | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  ↔  𝑍  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) ) ) ) | 
						
							| 154 | 153 | biimpd | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝐾  ≤  𝑚 )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  𝑍  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) ) ) ) | 
						
							| 155 | 154 | exp41 | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ( 𝐾  ≤  𝑚  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  𝑍  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) ) ) ) ) ) ) | 
						
							| 156 | 155 | com24 | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( 𝑚  ∈  ( 0 ... 𝑁 )  →  ( 𝐾  ≤  𝑚  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  𝑍  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) ) ) ) ) ) ) | 
						
							| 157 | 156 | imp31 | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐾  ≤  𝑚  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  𝑍  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) ) ) ) ) | 
						
							| 158 | 157 | com23 | ⊢ ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  ( 𝐾  ≤  𝑚  →  𝑍  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) ) ) ) ) | 
						
							| 159 | 158 | imp | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ( 𝐾  ≤  𝑚  →  𝑍  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) ) ) ) | 
						
							| 160 | 159 | impcom | ⊢ ( ( 𝐾  ≤  𝑚  ∧  ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  𝑍  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) ) ) | 
						
							| 161 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑚  −  𝐾 )  →  ( 𝑋  cyclShift  𝑛 )  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) ) ) | 
						
							| 162 | 161 | rspceeqv | ⊢ ( ( ( 𝑚  −  𝐾 )  ∈  ( 0 ... 𝑁 )  ∧  𝑍  =  ( 𝑋  cyclShift  ( 𝑚  −  𝐾 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 163 | 128 160 162 | syl2anc | ⊢ ( ( 𝐾  ≤  𝑚  ∧  ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 164 | 163 | ex | ⊢ ( 𝐾  ≤  𝑚  →  ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 165 | 84 122 164 | pm2.61ii | ⊢ ( ( ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  ∧  𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 166 | 165 | rexlimdva2 | ⊢ ( ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 ) )  →  ( ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 167 | 166 | ex | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 168 | 167 | com23 | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 ) )  →  ( ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 169 | 168 | ex | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ( ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 170 | 169 | com24 | ⊢ ( 𝐾  ∈  ( 0 ... 𝑁 )  →  ( 𝑋  =  ( 𝑌  cyclShift  𝐾 )  →  ( ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 )  →  ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 171 | 170 | 3imp | ⊢ ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 172 | 171 | com12 | ⊢ ( ( 𝑌  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑌 )  =  𝑁 )  →  ( ( 𝐾  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑌  cyclShift  𝐾 )  ∧  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑌  cyclShift  𝑚 ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑍  =  ( 𝑋  cyclShift  𝑛 ) ) ) |