| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lencl | ⊢ ( 𝑋  ∈  Word  𝑉  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 2 |  | elnn0uz | ⊢ ( ( ♯ ‘ 𝑋 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝑋 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝑋  ∈  Word  𝑉  →  ( ♯ ‘ 𝑋 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ( ♯ ‘ 𝑋 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑋 )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  ↔  ( ♯ ‘ 𝑋 )  ∈  ( ℤ≥ ‘ 0 ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  ↔  ( ♯ ‘ 𝑋 )  ∈  ( ℤ≥ ‘ 0 ) ) ) | 
						
							| 7 | 4 6 | mpbird | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 8 | 7 | 3adant2 | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 10 |  | fzisfzounsn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  ( 0 ... 𝑁 )  =  ( ( 0 ..^ 𝑁 )  ∪  { 𝑁 } ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( 0 ... 𝑁 )  =  ( ( 0 ..^ 𝑁 )  ∪  { 𝑁 } ) ) | 
						
							| 12 | 11 | rexeqdv | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( ( 0 ..^ 𝑁 )  ∪  { 𝑁 } ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 13 |  | rexun | ⊢ ( ∃ 𝑛  ∈  ( ( 0 ..^ 𝑁 )  ∪  { 𝑁 } ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  ( ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ∨  ∃ 𝑛  ∈  { 𝑁 } 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 14 | 12 13 | bitrdi | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  ( ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ∨  ∃ 𝑛  ∈  { 𝑁 } 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 15 |  | fvex | ⊢ ( ♯ ‘ 𝑋 )  ∈  V | 
						
							| 16 |  | eleq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑋 )  →  ( 𝑁  ∈  V  ↔  ( ♯ ‘ 𝑋 )  ∈  V ) ) | 
						
							| 17 | 15 16 | mpbiri | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑋 )  →  𝑁  ∈  V ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑋  cyclShift  𝑛 )  =  ( 𝑋  cyclShift  𝑁 ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑛  =  𝑁  →  ( 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  𝑦  =  ( 𝑋  cyclShift  𝑁 ) ) ) | 
						
							| 20 | 19 | rexsng | ⊢ ( 𝑁  ∈  V  →  ( ∃ 𝑛  ∈  { 𝑁 } 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  𝑦  =  ( 𝑋  cyclShift  𝑁 ) ) ) | 
						
							| 21 | 17 20 | syl | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑋 )  →  ( ∃ 𝑛  ∈  { 𝑁 } 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  𝑦  =  ( 𝑋  cyclShift  𝑁 ) ) ) | 
						
							| 22 | 21 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ( ∃ 𝑛  ∈  { 𝑁 } 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  𝑦  =  ( 𝑋  cyclShift  𝑁 ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( ∃ 𝑛  ∈  { 𝑁 } 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  𝑦  =  ( 𝑋  cyclShift  𝑁 ) ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑋 )  →  ( 𝑋  cyclShift  𝑁 )  =  ( 𝑋  cyclShift  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 25 | 24 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ( 𝑋  cyclShift  𝑁 )  =  ( 𝑋  cyclShift  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 26 |  | cshwn | ⊢ ( 𝑋  ∈  Word  𝑉  →  ( 𝑋  cyclShift  ( ♯ ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ( 𝑋  cyclShift  ( ♯ ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 28 | 25 27 | eqtrd | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ( 𝑋  cyclShift  𝑁 )  =  𝑋 ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ( 𝑦  =  ( 𝑋  cyclShift  𝑁 )  ↔  𝑦  =  𝑋 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( 𝑦  =  ( 𝑋  cyclShift  𝑁 )  ↔  𝑦  =  𝑋 ) ) | 
						
							| 31 |  | cshw0 | ⊢ ( 𝑋  ∈  Word  𝑉  →  ( 𝑋  cyclShift  0 )  =  𝑋 ) | 
						
							| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ( 𝑋  cyclShift  0 )  =  𝑋 ) | 
						
							| 33 |  | lennncl | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅ )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ ) | 
						
							| 34 | 33 | 3adant3 | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ ) | 
						
							| 35 |  | eleq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑋 )  →  ( 𝑁  ∈  ℕ  ↔  ( ♯ ‘ 𝑋 )  ∈  ℕ ) ) | 
						
							| 36 | 35 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ( 𝑁  ∈  ℕ  ↔  ( ♯ ‘ 𝑋 )  ∈  ℕ ) ) | 
						
							| 37 | 34 36 | mpbird | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 38 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 𝑁 )  ↔  𝑁  ∈  ℕ ) | 
						
							| 39 | 37 38 | sylibr | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  0  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 40 |  | oveq2 | ⊢ ( 0  =  𝑛  →  ( 𝑋  cyclShift  0 )  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 41 | 40 | eqeq1d | ⊢ ( 0  =  𝑛  →  ( ( 𝑋  cyclShift  0 )  =  𝑋  ↔  ( 𝑋  cyclShift  𝑛 )  =  𝑋 ) ) | 
						
							| 42 | 41 | eqcoms | ⊢ ( 𝑛  =  0  →  ( ( 𝑋  cyclShift  0 )  =  𝑋  ↔  ( 𝑋  cyclShift  𝑛 )  =  𝑋 ) ) | 
						
							| 43 |  | eqcom | ⊢ ( ( 𝑋  cyclShift  𝑛 )  =  𝑋  ↔  𝑋  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 44 | 42 43 | bitrdi | ⊢ ( 𝑛  =  0  →  ( ( 𝑋  cyclShift  0 )  =  𝑋  ↔  𝑋  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑛  =  0 )  →  ( ( 𝑋  cyclShift  0 )  =  𝑋  ↔  𝑋  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 46 | 45 | biimpd | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑛  =  0 )  →  ( ( 𝑋  cyclShift  0 )  =  𝑋  →  𝑋  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 47 | 39 46 | rspcimedv | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ( ( 𝑋  cyclShift  0 )  =  𝑋  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑋  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 48 | 32 47 | mpd | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑋  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑋  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  ∧  𝑦  =  𝑋 )  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑋  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 51 |  | eqeq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  𝑋  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  ∧  𝑦  =  𝑋 )  →  ( 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  𝑋  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 53 | 52 | rexbidv | ⊢ ( ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  ∧  𝑦  =  𝑋 )  →  ( ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑋  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 54 | 50 53 | mpbird | ⊢ ( ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  ∧  𝑦  =  𝑋 )  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) | 
						
							| 55 | 54 | ex | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( 𝑦  =  𝑋  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 56 | 30 55 | sylbid | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( 𝑦  =  ( 𝑋  cyclShift  𝑁 )  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 57 | 23 56 | sylbid | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( ∃ 𝑛  ∈  { 𝑁 } 𝑦  =  ( 𝑋  cyclShift  𝑛 )  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 58 | 57 | com12 | ⊢ ( ∃ 𝑛  ∈  { 𝑁 } 𝑦  =  ( 𝑋  cyclShift  𝑛 )  →  ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 59 | 58 | jao1i | ⊢ ( ( ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ∨  ∃ 𝑛  ∈  { 𝑁 } 𝑦  =  ( 𝑋  cyclShift  𝑛 ) )  →  ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 60 | 59 | com12 | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( ( ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ∨  ∃ 𝑛  ∈  { 𝑁 } 𝑦  =  ( 𝑋  cyclShift  𝑛 ) )  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 61 | 14 60 | sylbid | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  →  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 62 |  | fzossfz | ⊢ ( 0 ..^ 𝑁 )  ⊆  ( 0 ... 𝑁 ) | 
						
							| 63 |  | ssrexv | ⊢ ( ( 0 ..^ 𝑁 )  ⊆  ( 0 ... 𝑁 )  →  ( ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 64 | 62 63 | mp1i | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 65 | 61 64 | impbid | ⊢ ( ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  ∧  𝑦  ∈  Word  𝑉 )  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 66 | 65 | rabbidva | ⊢ ( ( 𝑋  ∈  Word  𝑉  ∧  𝑋  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑋 ) )  →  { 𝑦  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  𝑉  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑋  cyclShift  𝑛 ) } ) |