Metamath Proof Explorer


Theorem clwwlknscsh

Description: The set of cyclical shifts of a word representing a closed walk is the set of closed walks represented by cyclical shifts of a word. (Contributed by Alexander van der Vekens, 15-Jun-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Assertion clwwlknscsh N0WNClWWalksNGyNClWWalksNG|n0Ny=WcyclShiftn=yWordVtxG|n0Ny=WcyclShiftn

Proof

Step Hyp Ref Expression
1 eqeq1 y=xy=WcyclShiftnx=WcyclShiftn
2 1 rexbidv y=xn0Ny=WcyclShiftnn0Nx=WcyclShiftn
3 2 cbvrabv yNClWWalksNG|n0Ny=WcyclShiftn=xNClWWalksNG|n0Nx=WcyclShiftn
4 eqid VtxG=VtxG
5 4 clwwlknwrd wNClWWalksNGwWordVtxG
6 5 ad2antrl N0WNClWWalksNGwNClWWalksNGn0Nw=WcyclShiftnwWordVtxG
7 simprr N0WNClWWalksNGwNClWWalksNGn0Nw=WcyclShiftnn0Nw=WcyclShiftn
8 6 7 jca N0WNClWWalksNGwNClWWalksNGn0Nw=WcyclShiftnwWordVtxGn0Nw=WcyclShiftn
9 simprr wWordVtxGn0NN0WNClWWalksNGWNClWWalksNG
10 simpllr wWordVtxGn0NN0WNClWWalksNGw=WcyclShiftnn0N
11 clwwnisshclwwsn WNClWWalksNGn0NWcyclShiftnNClWWalksNG
12 9 10 11 syl2an2r wWordVtxGn0NN0WNClWWalksNGw=WcyclShiftnWcyclShiftnNClWWalksNG
13 eleq1 w=WcyclShiftnwNClWWalksNGWcyclShiftnNClWWalksNG
14 13 adantl wWordVtxGn0NN0WNClWWalksNGw=WcyclShiftnwNClWWalksNGWcyclShiftnNClWWalksNG
15 12 14 mpbird wWordVtxGn0NN0WNClWWalksNGw=WcyclShiftnwNClWWalksNG
16 15 exp31 wWordVtxGn0NN0WNClWWalksNGw=WcyclShiftnwNClWWalksNG
17 16 com23 wWordVtxGn0Nw=WcyclShiftnN0WNClWWalksNGwNClWWalksNG
18 17 rexlimdva wWordVtxGn0Nw=WcyclShiftnN0WNClWWalksNGwNClWWalksNG
19 18 imp wWordVtxGn0Nw=WcyclShiftnN0WNClWWalksNGwNClWWalksNG
20 19 impcom N0WNClWWalksNGwWordVtxGn0Nw=WcyclShiftnwNClWWalksNG
21 simprr N0WNClWWalksNGwWordVtxGn0Nw=WcyclShiftnn0Nw=WcyclShiftn
22 20 21 jca N0WNClWWalksNGwWordVtxGn0Nw=WcyclShiftnwNClWWalksNGn0Nw=WcyclShiftn
23 8 22 impbida N0WNClWWalksNGwNClWWalksNGn0Nw=WcyclShiftnwWordVtxGn0Nw=WcyclShiftn
24 eqeq1 x=wx=WcyclShiftnw=WcyclShiftn
25 24 rexbidv x=wn0Nx=WcyclShiftnn0Nw=WcyclShiftn
26 25 elrab wxNClWWalksNG|n0Nx=WcyclShiftnwNClWWalksNGn0Nw=WcyclShiftn
27 eqeq1 y=wy=WcyclShiftnw=WcyclShiftn
28 27 rexbidv y=wn0Ny=WcyclShiftnn0Nw=WcyclShiftn
29 28 elrab wyWordVtxG|n0Ny=WcyclShiftnwWordVtxGn0Nw=WcyclShiftn
30 23 26 29 3bitr4g N0WNClWWalksNGwxNClWWalksNG|n0Nx=WcyclShiftnwyWordVtxG|n0Ny=WcyclShiftn
31 30 eqrdv N0WNClWWalksNGxNClWWalksNG|n0Nx=WcyclShiftn=yWordVtxG|n0Ny=WcyclShiftn
32 3 31 eqtrid N0WNClWWalksNGyNClWWalksNG|n0Ny=WcyclShiftn=yWordVtxG|n0Ny=WcyclShiftn