| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  ( 𝑊  cyclShift  𝑛 )  ↔  𝑥  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 2 | 1 | rexbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑊  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 3 | 2 | cbvrabv | ⊢ { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑊  cyclShift  𝑛 ) }  =  { 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑊  cyclShift  𝑛 ) } | 
						
							| 4 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 5 | 4 | clwwlknwrd | ⊢ ( 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 6 | 5 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  ∧  ( 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) )  →  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 7 |  | simprr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  ∧  ( 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) | 
						
							| 8 | 6 7 | jca | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  ∧  ( 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) )  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 9 |  | simprr | ⊢ ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) )  →  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 10 |  | simpllr | ⊢ ( ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) )  ∧  𝑤  =  ( 𝑊  cyclShift  𝑛 ) )  →  𝑛  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 11 |  | clwwnisshclwwsn | ⊢ ( ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑊  cyclShift  𝑛 )  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 12 | 9 10 11 | syl2an2r | ⊢ ( ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) )  ∧  𝑤  =  ( 𝑊  cyclShift  𝑛 ) )  →  ( 𝑊  cyclShift  𝑛 )  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 13 |  | eleq1 | ⊢ ( 𝑤  =  ( 𝑊  cyclShift  𝑛 )  →  ( 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ↔  ( 𝑊  cyclShift  𝑛 )  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) )  ∧  𝑤  =  ( 𝑊  cyclShift  𝑛 ) )  →  ( 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ↔  ( 𝑊  cyclShift  𝑛 )  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) )  ∧  𝑤  =  ( 𝑊  cyclShift  𝑛 ) )  →  𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 16 | 15 | exp31 | ⊢ ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  ( 𝑤  =  ( 𝑊  cyclShift  𝑛 )  →  𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) ) ) | 
						
							| 17 | 16 | com23 | ⊢ ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑤  =  ( 𝑊  cyclShift  𝑛 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) ) ) | 
						
							| 18 | 17 | rexlimdva | ⊢ ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) ) ) | 
						
							| 19 | 18 | imp | ⊢ ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) ) | 
						
							| 20 | 19 | impcom | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  ∧  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) )  →  𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 21 |  | simprr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  ∧  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) | 
						
							| 22 | 20 21 | jca | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  ∧  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) )  →  ( 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 23 | 8 22 | impbida | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  ( ( 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) )  ↔  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) ) ) | 
						
							| 24 |  | eqeq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  =  ( 𝑊  cyclShift  𝑛 )  ↔  𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 25 | 24 | rexbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑊  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 26 | 25 | elrab | ⊢ ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑊  cyclShift  𝑛 ) }  ↔  ( 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 27 |  | eqeq1 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑦  =  ( 𝑊  cyclShift  𝑛 )  ↔  𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 28 | 27 | rexbidv | ⊢ ( 𝑦  =  𝑤  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑊  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 29 | 28 | elrab | ⊢ ( 𝑤  ∈  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑊  cyclShift  𝑛 ) }  ↔  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑤  =  ( 𝑊  cyclShift  𝑛 ) ) ) | 
						
							| 30 | 23 26 29 | 3bitr4g | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  ( 𝑤  ∈  { 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑊  cyclShift  𝑛 ) }  ↔  𝑤  ∈  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑊  cyclShift  𝑛 ) } ) ) | 
						
							| 31 | 30 | eqrdv | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  { 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑥  =  ( 𝑊  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑊  cyclShift  𝑛 ) } ) | 
						
							| 32 | 3 31 | eqtrid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑊  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑊  cyclShift  𝑛 ) } ) |