| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w | ⊢ 𝑊  =  ( 𝑁  ClWWalksN  𝐺 ) | 
						
							| 2 |  | erclwwlkn.r | ⊢  ∼   =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } | 
						
							| 3 | 1 2 | eclclwwlkn1 | ⊢ ( 𝐵  ∈  ( 𝑊  /   ∼  )  →  ( 𝐵  ∈  ( 𝑊  /   ∼  )  ↔  ∃ 𝑥  ∈  𝑊 𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 4 |  | eqeq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  𝑌  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 5 | 4 | rexbidv | ⊢ ( 𝑦  =  𝑌  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 6 | 5 | elrab | ⊢ ( 𝑌  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑥  cyclShift  𝑛 )  =  ( 𝑥  cyclShift  𝑘 ) ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( 𝑛  =  𝑘  →  ( 𝑌  =  ( 𝑥  cyclShift  𝑛 )  ↔  𝑌  =  ( 𝑥  cyclShift  𝑘 ) ) ) | 
						
							| 9 | 8 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑘  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑘 ) ) | 
						
							| 10 |  | eqeq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  𝑋  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 11 | 10 | rexbidv | ⊢ ( 𝑦  =  𝑋  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑋  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 12 | 11 | elrab | ⊢ ( 𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  ( 𝑋  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑋  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑥  cyclShift  𝑛 )  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑋  =  ( 𝑥  cyclShift  𝑛 )  ↔  𝑋  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 15 | 14 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑋  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑋  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 16 | 1 | eleclclwwlknlem2 | ⊢ ( ( ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑚 ) )  ∧  ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 ) )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑘 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝑚  ∈  ( 0 ... 𝑁 )  ∧  𝑋  =  ( 𝑥  cyclShift  𝑚 ) )  →  ( ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑘 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 18 | 17 | rexlimiva | ⊢ ( ∃ 𝑚  ∈  ( 0 ... 𝑁 ) 𝑋  =  ( 𝑥  cyclShift  𝑚 )  →  ( ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑘 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 19 | 15 18 | sylbi | ⊢ ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑋  =  ( 𝑥  cyclShift  𝑛 )  →  ( ( 𝑋  ∈  𝑊  ∧  𝑥  ∈  𝑊 )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑘 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 20 | 19 | expd | ⊢ ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑋  =  ( 𝑥  cyclShift  𝑛 )  →  ( 𝑋  ∈  𝑊  →  ( 𝑥  ∈  𝑊  →  ( ∃ 𝑘  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑘 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 21 | 20 | impcom | ⊢ ( ( 𝑋  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑋  =  ( 𝑥  cyclShift  𝑛 ) )  →  ( 𝑥  ∈  𝑊  →  ( ∃ 𝑘  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑘 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 22 | 12 21 | sylbi | ⊢ ( 𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( 𝑥  ∈  𝑊  →  ( ∃ 𝑘  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑘 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 23 | 22 | com12 | ⊢ ( 𝑥  ∈  𝑊  →  ( 𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ∃ 𝑘  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑘 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 24 | 23 | ad2antlr | ⊢ ( ( ( 𝐵  ∈  ( 𝑊  /   ∼  )  ∧  𝑥  ∈  𝑊 )  ∧  𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( 𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ∃ 𝑘  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑘 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( ( ( 𝐵  ∈  ( 𝑊  /   ∼  )  ∧  𝑥  ∈  𝑊 )  ∧  𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  ∧  𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( ∃ 𝑘  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑘 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 26 | 9 25 | bitrid | ⊢ ( ( ( ( 𝐵  ∈  ( 𝑊  /   ∼  )  ∧  𝑥  ∈  𝑊 )  ∧  𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  ∧  𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) | 
						
							| 27 | 26 | anbi2d | ⊢ ( ( ( ( 𝐵  ∈  ( 𝑊  /   ∼  )  ∧  𝑥  ∈  𝑊 )  ∧  𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  ∧  𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑥  cyclShift  𝑛 ) )  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 28 | 6 27 | bitrid | ⊢ ( ( ( ( 𝐵  ∈  ( 𝑊  /   ∼  )  ∧  𝑥  ∈  𝑊 )  ∧  𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  ∧  𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( 𝑌  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ( ( 𝐵  ∈  ( 𝑊  /   ∼  )  ∧  𝑥  ∈  𝑊 )  ∧  𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( 𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( 𝑌  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 30 |  | eleq2 | ⊢ ( 𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( 𝑋  ∈  𝐵  ↔  𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 31 |  | eleq2 | ⊢ ( 𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( 𝑌  ∈  𝐵  ↔  𝑌  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 32 | 31 | bibi1d | ⊢ ( 𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( 𝑌  ∈  𝐵  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) )  ↔  ( 𝑌  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 33 | 30 32 | imbi12d | ⊢ ( 𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( 𝑋  ∈  𝐵  →  ( 𝑌  ∈  𝐵  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) )  ↔  ( 𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( 𝑌  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( 𝐵  ∈  ( 𝑊  /   ∼  )  ∧  𝑥  ∈  𝑊 )  ∧  𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( ( 𝑋  ∈  𝐵  →  ( 𝑌  ∈  𝐵  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) )  ↔  ( 𝑋  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( 𝑌  ∈  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) ) | 
						
							| 35 | 29 34 | mpbird | ⊢ ( ( ( 𝐵  ∈  ( 𝑊  /   ∼  )  ∧  𝑥  ∈  𝑊 )  ∧  𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( 𝑋  ∈  𝐵  →  ( 𝑌  ∈  𝐵  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 36 | 35 | rexlimdva2 | ⊢ ( 𝐵  ∈  ( 𝑊  /   ∼  )  →  ( ∃ 𝑥  ∈  𝑊 𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( 𝑋  ∈  𝐵  →  ( 𝑌  ∈  𝐵  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) ) | 
						
							| 37 | 3 36 | sylbid | ⊢ ( 𝐵  ∈  ( 𝑊  /   ∼  )  →  ( 𝐵  ∈  ( 𝑊  /   ∼  )  →  ( 𝑋  ∈  𝐵  →  ( 𝑌  ∈  𝐵  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) ) | 
						
							| 38 | 37 | pm2.43i | ⊢ ( 𝐵  ∈  ( 𝑊  /   ∼  )  →  ( 𝑋  ∈  𝐵  →  ( 𝑌  ∈  𝐵  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 39 | 38 | imp | ⊢ ( ( 𝐵  ∈  ( 𝑊  /   ∼  )  ∧  𝑋  ∈  𝐵 )  →  ( 𝑌  ∈  𝐵  ↔  ( 𝑌  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑌  =  ( 𝑋  cyclShift  𝑛 ) ) ) ) |