| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w | ⊢ 𝑊  =  ( 𝑁  ClWWalksN  𝐺 ) | 
						
							| 2 |  | erclwwlkn.r | ⊢  ∼   =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } | 
						
							| 3 |  | elqsecl | ⊢ ( 𝐵  ∈  𝑋  →  ( 𝐵  ∈  ( 𝑊  /   ∼  )  ↔  ∃ 𝑥  ∈  𝑊 𝐵  =  { 𝑦  ∣  𝑥  ∼  𝑦 } ) ) | 
						
							| 4 | 1 2 | erclwwlknsym | ⊢ ( 𝑥  ∼  𝑦  →  𝑦  ∼  𝑥 ) | 
						
							| 5 | 1 2 | erclwwlknsym | ⊢ ( 𝑦  ∼  𝑥  →  𝑥  ∼  𝑦 ) | 
						
							| 6 | 4 5 | impbii | ⊢ ( 𝑥  ∼  𝑦  ↔  𝑦  ∼  𝑥 ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝑥  ∈  𝑊 )  →  ( 𝑥  ∼  𝑦  ↔  𝑦  ∼  𝑥 ) ) | 
						
							| 8 | 7 | abbidv | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∣  𝑥  ∼  𝑦 }  =  { 𝑦  ∣  𝑦  ∼  𝑥 } ) | 
						
							| 9 | 1 2 | erclwwlkneq | ⊢ ( ( 𝑦  ∈  V  ∧  𝑥  ∈  V )  →  ( 𝑦  ∼  𝑥  ↔  ( 𝑦  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 10 | 9 | el2v | ⊢ ( 𝑦  ∼  𝑥  ↔  ( 𝑦  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝑥  ∈  𝑊 )  →  ( 𝑦  ∼  𝑥  ↔  ( 𝑦  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 12 | 11 | abbidv | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∣  𝑦  ∼  𝑥 }  =  { 𝑦  ∣  ( 𝑦  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) } ) | 
						
							| 13 |  | 3anan12 | ⊢ ( ( 𝑦  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) )  ↔  ( 𝑥  ∈  𝑊  ∧  ( 𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 14 |  | ibar | ⊢ ( 𝑥  ∈  𝑊  →  ( ( 𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) )  ↔  ( 𝑥  ∈  𝑊  ∧  ( 𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) ) | 
						
							| 15 | 14 | bicomd | ⊢ ( 𝑥  ∈  𝑊  →  ( ( 𝑥  ∈  𝑊  ∧  ( 𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) )  ↔  ( 𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝑥  ∈  𝑊 )  →  ( ( 𝑥  ∈  𝑊  ∧  ( 𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) )  ↔  ( 𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 17 | 13 16 | bitrid | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝑥  ∈  𝑊 )  →  ( ( 𝑦  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) )  ↔  ( 𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) ) | 
						
							| 18 | 17 | abbidv | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∣  ( 𝑦  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) }  =  { 𝑦  ∣  ( 𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) } ) | 
						
							| 19 |  | df-rab | ⊢ { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) } | 
						
							| 20 | 18 19 | eqtr4di | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∣  ( 𝑦  ∈  𝑊  ∧  𝑥  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) }  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 21 | 8 12 20 | 3eqtrd | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∣  𝑥  ∼  𝑦 }  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( ( 𝐵  ∈  𝑋  ∧  𝑥  ∈  𝑊 )  →  ( 𝐵  =  { 𝑦  ∣  𝑥  ∼  𝑦 }  ↔  𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 23 | 22 | rexbidva | ⊢ ( 𝐵  ∈  𝑋  →  ( ∃ 𝑥  ∈  𝑊 𝐵  =  { 𝑦  ∣  𝑥  ∼  𝑦 }  ↔  ∃ 𝑥  ∈  𝑊 𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 24 | 3 23 | bitrd | ⊢ ( 𝐵  ∈  𝑋  →  ( 𝐵  ∈  ( 𝑊  /   ∼  )  ↔  ∃ 𝑥  ∈  𝑊 𝐵  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) |