| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w | ⊢ 𝑊  =  ( 𝑁  ClWWalksN  𝐺 ) | 
						
							| 2 |  | erclwwlkn.r | ⊢  ∼   =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } | 
						
							| 3 | 1 2 | eclclwwlkn1 | ⊢ ( 𝑈  ∈  ( 𝑊  /   ∼  )  →  ( 𝑈  ∈  ( 𝑊  /   ∼  )  ↔  ∃ 𝑥  ∈  𝑊 𝑈  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 4 |  | rabeq | ⊢ ( 𝑊  =  ( 𝑁  ClWWalksN  𝐺 )  →  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 5 | 1 4 | mp1i | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 6 |  | prmnn | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℕ ) | 
						
							| 7 | 6 | nnnn0d | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℕ0 ) | 
						
							| 8 | 1 | eleq2i | ⊢ ( 𝑥  ∈  𝑊  ↔  𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 9 | 8 | biimpi | ⊢ ( 𝑥  ∈  𝑊  →  𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 10 |  | clwwlknscsh | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 11 | 7 9 10 | syl2an | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 12 | 5 11 | eqtrd | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑥  ∈  𝑊 )  →  ( 𝑈  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 14 |  | simpll | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑁  ∈  ℕ )  →  𝑥  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 15 |  | elnnne0 | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  ∈  ℕ0  ∧  𝑁  ≠  0 ) ) | 
						
							| 16 |  | eqeq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 𝑁  =  0  ↔  ( ♯ ‘ 𝑥 )  =  0 ) ) | 
						
							| 17 | 16 | eqcoms | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝑁  →  ( 𝑁  =  0  ↔  ( ♯ ‘ 𝑥 )  =  0 ) ) | 
						
							| 18 |  | hasheq0 | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑥 )  =  0  ↔  𝑥  =  ∅ ) ) | 
						
							| 19 | 17 18 | sylan9bbr | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑁  =  0  ↔  𝑥  =  ∅ ) ) | 
						
							| 20 | 19 | necon3bid | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑁  ≠  0  ↔  𝑥  ≠  ∅ ) ) | 
						
							| 21 | 20 | biimpcd | ⊢ ( 𝑁  ≠  0  →  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  𝑥  ≠  ∅ ) ) | 
						
							| 22 | 15 21 | simplbiim | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  𝑥  ≠  ∅ ) ) | 
						
							| 23 | 22 | impcom | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑁  ∈  ℕ )  →  𝑥  ≠  ∅ ) | 
						
							| 24 |  | simplr | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ 𝑥 )  =  𝑁 ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑁  ∈  ℕ )  →  𝑁  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 26 | 14 23 25 | 3jca | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 27 | 26 | ex | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 28 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 29 | 28 | clwwlknbp | ⊢ ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 ) ) | 
						
							| 30 | 27 29 | syl11 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 31 | 8 30 | biimtrid | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  𝑊  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 32 | 6 31 | syl | ⊢ ( 𝑁  ∈  ℙ  →  ( 𝑥  ∈  𝑊  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 33 | 32 | imp | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑥  ∈  𝑊 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 34 |  | scshwfzeqfzo | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) )  →  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 36 | 35 | eqeq2d | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑥  ∈  𝑊 )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑥  cyclShift  𝑛 )  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 38 | 37 | eqeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 39 | 38 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑚  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 40 |  | eqeq1 | ⊢ ( 𝑦  =  𝑢  →  ( 𝑦  =  ( 𝑥  cyclShift  𝑚 )  ↔  𝑢  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 41 |  | eqcom | ⊢ ( 𝑢  =  ( 𝑥  cyclShift  𝑚 )  ↔  ( 𝑥  cyclShift  𝑚 )  =  𝑢 ) | 
						
							| 42 | 40 41 | bitrdi | ⊢ ( 𝑦  =  𝑢  →  ( 𝑦  =  ( 𝑥  cyclShift  𝑚 )  ↔  ( 𝑥  cyclShift  𝑚 )  =  𝑢 ) ) | 
						
							| 43 | 42 | rexbidv | ⊢ ( 𝑦  =  𝑢  →  ( ∃ 𝑚  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 )  ↔  ∃ 𝑚  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥  cyclShift  𝑚 )  =  𝑢 ) ) | 
						
							| 44 | 39 43 | bitrid | ⊢ ( 𝑦  =  𝑢  →  ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑚  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥  cyclShift  𝑚 )  =  𝑢 ) ) | 
						
							| 45 | 44 | cbvrabv | ⊢ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑚  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥  cyclShift  𝑚 )  =  𝑢 } | 
						
							| 46 | 45 | cshwshash | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  →  ( ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  ( ♯ ‘ 𝑥 )  ∨  ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  1 ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  ∧  𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  ( ♯ ‘ 𝑥 )  ∨  ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  1 ) ) | 
						
							| 48 | 47 | orcomd | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  ∧  𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  1  ∨  ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 49 |  | fveqeq2 | ⊢ ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ↔  ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  1 ) ) | 
						
							| 50 |  | fveqeq2 | ⊢ ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 )  ↔  ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 51 | 49 50 | orbi12d | ⊢ ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) )  ↔  ( ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  1  ∨  ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  ∧  𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) )  ↔  ( ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  1  ∨  ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 53 | 48 52 | mpbird | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  ∧  𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 55 | 54 | ex | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑥 )  ∈  ℙ  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( ( ♯ ‘ 𝑥 )  ∈  ℙ  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) | 
						
							| 57 |  | eleq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 𝑁  ∈  ℙ  ↔  ( ♯ ‘ 𝑥 )  ∈  ℙ ) ) | 
						
							| 58 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 0 ..^ 𝑁 )  =  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 59 | 58 | rexeqdv | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 60 | 59 | rabbidv | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 61 | 60 | eqeq2d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 62 |  | eqeq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( ( ♯ ‘ 𝑈 )  =  𝑁  ↔  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 63 | 62 | orbi2d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 )  ↔  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 64 | 61 63 | imbi12d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) )  ↔  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) | 
						
							| 65 | 57 64 | imbi12d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( ( 𝑁  ∈  ℙ  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) )  ↔  ( ( ♯ ‘ 𝑥 )  ∈  ℙ  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 66 | 65 | eqcoms | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝑁  →  ( ( 𝑁  ∈  ℙ  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) )  ↔  ( ( ♯ ‘ 𝑥 )  ∈  ℙ  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( ( 𝑁  ∈  ℙ  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) )  ↔  ( ( ♯ ‘ 𝑥 )  ∈  ℙ  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 68 | 56 67 | mpbird | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑁  ∈  ℙ  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) ) | 
						
							| 69 | 29 68 | syl | ⊢ ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑁  ∈  ℙ  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) ) | 
						
							| 70 | 69 1 | eleq2s | ⊢ ( 𝑥  ∈  𝑊  →  ( 𝑁  ∈  ℙ  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) ) | 
						
							| 71 | 70 | impcom | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑥  ∈  𝑊 )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) | 
						
							| 72 | 36 71 | sylbid | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑥  ∈  𝑊 )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) | 
						
							| 73 | 13 72 | sylbid | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑥  ∈  𝑊 )  →  ( 𝑈  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) | 
						
							| 74 | 73 | rexlimdva | ⊢ ( 𝑁  ∈  ℙ  →  ( ∃ 𝑥  ∈  𝑊 𝑈  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) | 
						
							| 75 | 74 | com12 | ⊢ ( ∃ 𝑥  ∈  𝑊 𝑈  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( 𝑁  ∈  ℙ  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) | 
						
							| 76 | 3 75 | biimtrdi | ⊢ ( 𝑈  ∈  ( 𝑊  /   ∼  )  →  ( 𝑈  ∈  ( 𝑊  /   ∼  )  →  ( 𝑁  ∈  ℙ  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) ) | 
						
							| 77 | 76 | pm2.43i | ⊢ ( 𝑈  ∈  ( 𝑊  /   ∼  )  →  ( 𝑁  ∈  ℙ  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) | 
						
							| 78 | 77 | impcom | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑈  ∈  ( 𝑊  /   ∼  ) )  →  ( ( ♯ ‘ 𝑈 )  =  1  ∨  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) |