Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn.w |
|
2 |
|
erclwwlkn.r |
|
3 |
1 2
|
eclclwwlkn1 |
|
4 |
|
rabeq |
|
5 |
1 4
|
mp1i |
|
6 |
|
prmnn |
|
7 |
6
|
nnnn0d |
|
8 |
1
|
eleq2i |
|
9 |
8
|
biimpi |
|
10 |
|
clwwlknscsh |
|
11 |
7 9 10
|
syl2an |
|
12 |
5 11
|
eqtrd |
|
13 |
12
|
eqeq2d |
|
14 |
|
simpll |
|
15 |
|
elnnne0 |
|
16 |
|
eqeq1 |
|
17 |
16
|
eqcoms |
|
18 |
|
hasheq0 |
|
19 |
17 18
|
sylan9bbr |
|
20 |
19
|
necon3bid |
|
21 |
20
|
biimpcd |
|
22 |
15 21
|
simplbiim |
|
23 |
22
|
impcom |
|
24 |
|
simplr |
|
25 |
24
|
eqcomd |
|
26 |
14 23 25
|
3jca |
|
27 |
26
|
ex |
|
28 |
|
eqid |
|
29 |
28
|
clwwlknbp |
|
30 |
27 29
|
syl11 |
|
31 |
8 30
|
syl5bi |
|
32 |
6 31
|
syl |
|
33 |
32
|
imp |
|
34 |
|
scshwfzeqfzo |
|
35 |
33 34
|
syl |
|
36 |
35
|
eqeq2d |
|
37 |
|
oveq2 |
|
38 |
37
|
eqeq2d |
|
39 |
38
|
cbvrexvw |
|
40 |
|
eqeq1 |
|
41 |
|
eqcom |
|
42 |
40 41
|
bitrdi |
|
43 |
42
|
rexbidv |
|
44 |
39 43
|
syl5bb |
|
45 |
44
|
cbvrabv |
|
46 |
45
|
cshwshash |
|
47 |
46
|
adantr |
|
48 |
47
|
orcomd |
|
49 |
|
fveqeq2 |
|
50 |
|
fveqeq2 |
|
51 |
49 50
|
orbi12d |
|
52 |
51
|
adantl |
|
53 |
48 52
|
mpbird |
|
54 |
53
|
ex |
|
55 |
54
|
ex |
|
56 |
55
|
adantr |
|
57 |
|
eleq1 |
|
58 |
|
oveq2 |
|
59 |
58
|
rexeqdv |
|
60 |
59
|
rabbidv |
|
61 |
60
|
eqeq2d |
|
62 |
|
eqeq2 |
|
63 |
62
|
orbi2d |
|
64 |
61 63
|
imbi12d |
|
65 |
57 64
|
imbi12d |
|
66 |
65
|
eqcoms |
|
67 |
66
|
adantl |
|
68 |
56 67
|
mpbird |
|
69 |
29 68
|
syl |
|
70 |
69 1
|
eleq2s |
|
71 |
70
|
impcom |
|
72 |
36 71
|
sylbid |
|
73 |
13 72
|
sylbid |
|
74 |
73
|
rexlimdva |
|
75 |
74
|
com12 |
|
76 |
3 75
|
syl6bi |
|
77 |
76
|
pm2.43i |
|
78 |
77
|
impcom |
|