Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn.w |
⊢ 𝑊 = ( 𝑁 ClWWalksN 𝐺 ) |
2 |
|
erclwwlkn.r |
⊢ ∼ = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } |
3 |
1 2
|
eclclwwlkn1 |
⊢ ( 𝑈 ∈ ( 𝑊 / ∼ ) → ( 𝑈 ∈ ( 𝑊 / ∼ ) ↔ ∃ 𝑥 ∈ 𝑊 𝑈 = { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) ) |
4 |
|
rabeq |
⊢ ( 𝑊 = ( 𝑁 ClWWalksN 𝐺 ) → { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
5 |
1 4
|
mp1i |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) ∧ 𝑥 ∈ 𝑊 ) → { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
6 |
|
prmnn |
⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℕ ) |
7 |
6
|
nnnn0d |
⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℕ0 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → 𝑁 ∈ ℕ0 ) |
9 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
10 |
9
|
biimpi |
⊢ ( 𝑥 ∈ 𝑊 → 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
11 |
|
clwwlknscsh |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → { 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
12 |
8 10 11
|
syl2an |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) ∧ 𝑥 ∈ 𝑊 ) → { 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
13 |
5 12
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) ∧ 𝑥 ∈ 𝑊 ) → { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
14 |
13
|
eqeq2d |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑈 = { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ↔ 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) ) |
15 |
6
|
adantl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → 𝑁 ∈ ℕ ) |
16 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ) |
17 |
|
elnnne0 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) |
18 |
|
eqeq1 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( 𝑁 = 0 ↔ ( ♯ ‘ 𝑥 ) = 0 ) ) |
19 |
18
|
eqcoms |
⊢ ( ( ♯ ‘ 𝑥 ) = 𝑁 → ( 𝑁 = 0 ↔ ( ♯ ‘ 𝑥 ) = 0 ) ) |
20 |
|
hasheq0 |
⊢ ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑥 ) = 0 ↔ 𝑥 = ∅ ) ) |
21 |
19 20
|
sylan9bbr |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( 𝑁 = 0 ↔ 𝑥 = ∅ ) ) |
22 |
21
|
necon3bid |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( 𝑁 ≠ 0 ↔ 𝑥 ≠ ∅ ) ) |
23 |
22
|
biimpcd |
⊢ ( 𝑁 ≠ 0 → ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → 𝑥 ≠ ∅ ) ) |
24 |
17 23
|
simplbiim |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → 𝑥 ≠ ∅ ) ) |
25 |
24
|
impcom |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → 𝑥 ≠ ∅ ) |
26 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ 𝑥 ) = 𝑁 ) |
27 |
26
|
eqcomd |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 = ( ♯ ‘ 𝑥 ) ) |
28 |
16 25 27
|
3jca |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) |
29 |
28
|
ex |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( 𝑁 ∈ ℕ → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) ) |
30 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
31 |
30
|
clwwlknbp |
⊢ ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) ) |
32 |
29 31
|
syl11 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) ) |
33 |
9 32
|
syl5bi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ 𝑊 → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) ) |
34 |
15 33
|
syl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( 𝑥 ∈ 𝑊 → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) ) |
35 |
34
|
imp |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) ) |
36 |
|
scshwfzeqfzo |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = ( ♯ ‘ 𝑥 ) ) → { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
37 |
35 36
|
syl |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) ∧ 𝑥 ∈ 𝑊 ) → { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
38 |
37
|
eqeq2d |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ↔ 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) ) |
39 |
|
fveq2 |
⊢ ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) ) |
40 |
|
simprl |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) ) ∧ ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ) → 𝐺 ∈ UMGraph ) |
41 |
|
prmuz2 |
⊢ ( ( ♯ ‘ 𝑥 ) ∈ ℙ → ( ♯ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 2 ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) → ( ♯ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 2 ) ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) ) ∧ ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ) → ( ♯ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 2 ) ) |
44 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) ) ∧ ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ) → 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) ) |
45 |
|
umgr2cwwkdifex |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) ≠ ( 𝑥 ‘ 0 ) ) |
46 |
40 43 44 45
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) ) ∧ ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ) → ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) ≠ ( 𝑥 ‘ 0 ) ) |
47 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 cyclShift 𝑛 ) = ( 𝑥 cyclShift 𝑚 ) ) |
48 |
47
|
eqeq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) ) |
49 |
48
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ ∃ 𝑚 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ) |
50 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = ( 𝑥 cyclShift 𝑚 ) ↔ 𝑢 = ( 𝑥 cyclShift 𝑚 ) ) ) |
51 |
|
eqcom |
⊢ ( 𝑢 = ( 𝑥 cyclShift 𝑚 ) ↔ ( 𝑥 cyclShift 𝑚 ) = 𝑢 ) |
52 |
50 51
|
bitrdi |
⊢ ( 𝑦 = 𝑢 → ( 𝑦 = ( 𝑥 cyclShift 𝑚 ) ↔ ( 𝑥 cyclShift 𝑚 ) = 𝑢 ) ) |
53 |
52
|
rexbidv |
⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑚 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑚 ) ↔ ∃ 𝑚 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 cyclShift 𝑚 ) = 𝑢 ) ) |
54 |
49 53
|
syl5bb |
⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ ∃ 𝑚 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 cyclShift 𝑚 ) = 𝑢 ) ) |
55 |
54
|
cbvrabv |
⊢ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑢 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑚 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 cyclShift 𝑚 ) = 𝑢 } |
56 |
55
|
cshwshashnsame |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) → ( ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) ≠ ( 𝑥 ‘ 0 ) → ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = ( ♯ ‘ 𝑥 ) ) ) |
57 |
56
|
ad2ant2rl |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) ) ∧ ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ) → ( ∃ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) ≠ ( 𝑥 ‘ 0 ) → ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = ( ♯ ‘ 𝑥 ) ) ) |
58 |
46 57
|
mpd |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) ) ∧ ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ) → ( ♯ ‘ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) = ( ♯ ‘ 𝑥 ) ) |
59 |
39 58
|
sylan9eqr |
⊢ ( ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) ) ∧ ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ) ∧ 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) |
60 |
59
|
exp41 |
⊢ ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) → ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) → ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) |
62 |
|
oveq1 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( 𝑁 ClWWalksN 𝐺 ) = ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) ) |
63 |
62
|
eleq2d |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) ) ) |
64 |
|
eleq1 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( 𝑁 ∈ ℙ ↔ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ) |
65 |
64
|
anbi2d |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) ↔ ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) ) ) |
66 |
|
oveq2 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) |
67 |
66
|
rexeqdv |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ↔ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) ) ) |
68 |
67
|
rabbidv |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) |
69 |
68
|
eqeq2d |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ↔ 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } ) ) |
70 |
|
eqeq2 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( ( ♯ ‘ 𝑈 ) = 𝑁 ↔ ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) |
71 |
69 70
|
imbi12d |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ↔ ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) |
72 |
65 71
|
imbi12d |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ↔ ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) |
73 |
63 72
|
imbi12d |
⊢ ( 𝑁 = ( ♯ ‘ 𝑥 ) → ( ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) ↔ ( 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) → ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) ) |
74 |
73
|
eqcoms |
⊢ ( ( ♯ ‘ 𝑥 ) = 𝑁 → ( ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) ↔ ( 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) → ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) ) |
75 |
74
|
adantl |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) ↔ ( 𝑥 ∈ ( ( ♯ ‘ 𝑥 ) ClWWalksN 𝐺 ) → ( ( 𝐺 ∈ UMGraph ∧ ( ♯ ‘ 𝑥 ) ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑥 ) ) ) ) ) ) |
76 |
61 75
|
mpbird |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = 𝑁 ) → ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) ) |
77 |
31 76
|
mpcom |
⊢ ( 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) |
78 |
77 1
|
eleq2s |
⊢ ( 𝑥 ∈ 𝑊 → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) |
79 |
78
|
impcom |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ..^ 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) |
80 |
38 79
|
sylbid |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑈 = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) |
81 |
14 80
|
sylbid |
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑈 = { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) |
82 |
81
|
rexlimdva |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( ∃ 𝑥 ∈ 𝑊 𝑈 = { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) |
83 |
82
|
com12 |
⊢ ( ∃ 𝑥 ∈ 𝑊 𝑈 = { 𝑦 ∈ 𝑊 ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑥 cyclShift 𝑛 ) } → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) |
84 |
3 83
|
syl6bi |
⊢ ( 𝑈 ∈ ( 𝑊 / ∼ ) → ( 𝑈 ∈ ( 𝑊 / ∼ ) → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) ) |
85 |
84
|
pm2.43i |
⊢ ( 𝑈 ∈ ( 𝑊 / ∼ ) → ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) |
86 |
85
|
com12 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ ℙ ) → ( 𝑈 ∈ ( 𝑊 / ∼ ) → ( ♯ ‘ 𝑈 ) = 𝑁 ) ) |