| Step | Hyp | Ref | Expression | 
						
							| 1 |  | erclwwlkn.w | ⊢ 𝑊  =  ( 𝑁  ClWWalksN  𝐺 ) | 
						
							| 2 |  | erclwwlkn.r | ⊢  ∼   =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊  ∧  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑡  =  ( 𝑢  cyclShift  𝑛 ) ) } | 
						
							| 3 | 1 2 | eclclwwlkn1 | ⊢ ( 𝑈  ∈  ( 𝑊  /   ∼  )  →  ( 𝑈  ∈  ( 𝑊  /   ∼  )  ↔  ∃ 𝑥  ∈  𝑊 𝑈  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 4 |  | rabeq | ⊢ ( 𝑊  =  ( 𝑁  ClWWalksN  𝐺 )  →  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 5 | 1 4 | mp1i | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 6 |  | prmnn | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℕ ) | 
						
							| 7 | 6 | nnnn0d | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℕ0 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 | 1 | eleq2i | ⊢ ( 𝑥  ∈  𝑊  ↔  𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 10 | 9 | biimpi | ⊢ ( 𝑥  ∈  𝑊  →  𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 11 |  | clwwlknscsh | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 12 | 8 10 11 | syl2an | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 13 | 5 12 | eqtrd | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  ∧  𝑥  ∈  𝑊 )  →  ( 𝑈  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 15 | 6 | adantl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  𝑁  ∈  ℕ ) | 
						
							| 16 |  | simpll | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑁  ∈  ℕ )  →  𝑥  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 17 |  | elnnne0 | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  ∈  ℕ0  ∧  𝑁  ≠  0 ) ) | 
						
							| 18 |  | eqeq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 𝑁  =  0  ↔  ( ♯ ‘ 𝑥 )  =  0 ) ) | 
						
							| 19 | 18 | eqcoms | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝑁  →  ( 𝑁  =  0  ↔  ( ♯ ‘ 𝑥 )  =  0 ) ) | 
						
							| 20 |  | hasheq0 | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑥 )  =  0  ↔  𝑥  =  ∅ ) ) | 
						
							| 21 | 19 20 | sylan9bbr | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑁  =  0  ↔  𝑥  =  ∅ ) ) | 
						
							| 22 | 21 | necon3bid | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑁  ≠  0  ↔  𝑥  ≠  ∅ ) ) | 
						
							| 23 | 22 | biimpcd | ⊢ ( 𝑁  ≠  0  →  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  𝑥  ≠  ∅ ) ) | 
						
							| 24 | 17 23 | simplbiim | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  𝑥  ≠  ∅ ) ) | 
						
							| 25 | 24 | impcom | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑁  ∈  ℕ )  →  𝑥  ≠  ∅ ) | 
						
							| 26 |  | simplr | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ 𝑥 )  =  𝑁 ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑁  ∈  ℕ )  →  𝑁  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 28 | 16 25 27 | 3jca | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 30 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 31 | 30 | clwwlknbp | ⊢ ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 ) ) | 
						
							| 32 | 29 31 | syl11 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 33 | 9 32 | biimtrid | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  𝑊  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 34 | 15 33 | syl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑥  ∈  𝑊  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  ∧  𝑥  ∈  𝑊 )  →  ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 36 |  | scshwfzeqfzo | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ≠  ∅  ∧  𝑁  =  ( ♯ ‘ 𝑥 ) )  →  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  ∧  𝑥  ∈  𝑊 )  →  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 38 | 37 | eqeq2d | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  ∧  𝑥  ∈  𝑊 )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 40 |  | simprl | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 ) )  ∧  ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ ) )  →  𝐺  ∈  UMGraph ) | 
						
							| 41 |  | prmuz2 | ⊢ ( ( ♯ ‘ 𝑥 )  ∈  ℙ  →  ( ♯ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  →  ( ♯ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 ) )  ∧  ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ ) )  →  ( ♯ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 ) )  ∧  ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ ) )  →  𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 ) ) | 
						
							| 45 |  | umgr2cwwkdifex | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 ) )  →  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 )  ≠  ( 𝑥 ‘ 0 ) ) | 
						
							| 46 | 40 43 44 45 | syl3anc | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 ) )  ∧  ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ ) )  →  ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 )  ≠  ( 𝑥 ‘ 0 ) ) | 
						
							| 47 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑥  cyclShift  𝑛 )  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 48 | 47 | eqeq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 49 | 48 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑚  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 ) ) | 
						
							| 50 |  | eqeq1 | ⊢ ( 𝑦  =  𝑢  →  ( 𝑦  =  ( 𝑥  cyclShift  𝑚 )  ↔  𝑢  =  ( 𝑥  cyclShift  𝑚 ) ) ) | 
						
							| 51 |  | eqcom | ⊢ ( 𝑢  =  ( 𝑥  cyclShift  𝑚 )  ↔  ( 𝑥  cyclShift  𝑚 )  =  𝑢 ) | 
						
							| 52 | 50 51 | bitrdi | ⊢ ( 𝑦  =  𝑢  →  ( 𝑦  =  ( 𝑥  cyclShift  𝑚 )  ↔  ( 𝑥  cyclShift  𝑚 )  =  𝑢 ) ) | 
						
							| 53 | 52 | rexbidv | ⊢ ( 𝑦  =  𝑢  →  ( ∃ 𝑚  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑚 )  ↔  ∃ 𝑚  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥  cyclShift  𝑚 )  =  𝑢 ) ) | 
						
							| 54 | 49 53 | bitrid | ⊢ ( 𝑦  =  𝑢  →  ( ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑚  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥  cyclShift  𝑚 )  =  𝑢 ) ) | 
						
							| 55 | 54 | cbvrabv | ⊢ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑢  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑚  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥  cyclShift  𝑚 )  =  𝑢 } | 
						
							| 56 | 55 | cshwshashnsame | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  →  ( ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 )  ≠  ( 𝑥 ‘ 0 )  →  ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 57 | 56 | ad2ant2rl | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 ) )  ∧  ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ ) )  →  ( ∃ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 )  ≠  ( 𝑥 ‘ 0 )  →  ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 58 | 46 57 | mpd | ⊢ ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 ) )  ∧  ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ ) )  →  ( ♯ ‘ { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 59 | 39 58 | sylan9eqr | ⊢ ( ( ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 ) )  ∧  ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ ) )  ∧  𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } )  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 60 | 59 | exp41 | ⊢ ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 )  →  ( ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 )  →  ( ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) | 
						
							| 62 |  | oveq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 𝑁  ClWWalksN  𝐺 )  =  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 ) ) | 
						
							| 63 | 62 | eleq2d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  ↔  𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 ) ) ) | 
						
							| 64 |  | eleq1 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 𝑁  ∈  ℙ  ↔  ( ♯ ‘ 𝑥 )  ∈  ℙ ) ) | 
						
							| 65 | 64 | anbi2d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  ↔  ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ ) ) ) | 
						
							| 66 |  | oveq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 0 ..^ 𝑁 )  =  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 67 | 66 | rexeqdv | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 )  ↔  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) ) ) | 
						
							| 68 | 67 | rabbidv | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) | 
						
							| 69 | 68 | eqeq2d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  ↔  𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) } ) ) | 
						
							| 70 |  | eqeq2 | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( ( ♯ ‘ 𝑈 )  =  𝑁  ↔  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 71 | 69 70 | imbi12d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 )  ↔  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) | 
						
							| 72 | 65 71 | imbi12d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) )  ↔  ( ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) | 
						
							| 73 | 63 72 | imbi12d | ⊢ ( 𝑁  =  ( ♯ ‘ 𝑥 )  →  ( ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) )  ↔  ( 𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 )  →  ( ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 74 | 73 | eqcoms | ⊢ ( ( ♯ ‘ 𝑥 )  =  𝑁  →  ( ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) )  ↔  ( 𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 )  →  ( ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) )  ↔  ( 𝑥  ∈  ( ( ♯ ‘ 𝑥 )  ClWWalksN  𝐺 )  →  ( ( 𝐺  ∈  UMGraph  ∧  ( ♯ ‘ 𝑥 )  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 76 | 61 75 | mpbird | ⊢ ( ( 𝑥  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑥 )  =  𝑁 )  →  ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) ) | 
						
							| 77 | 31 76 | mpcom | ⊢ ( 𝑥  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) | 
						
							| 78 | 77 1 | eleq2s | ⊢ ( 𝑥  ∈  𝑊  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) | 
						
							| 79 | 78 | impcom | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  ∧  𝑥  ∈  𝑊 )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ..^ 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) | 
						
							| 80 | 38 79 | sylbid | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  ∧  𝑥  ∈  𝑊 )  →  ( 𝑈  =  { 𝑦  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) | 
						
							| 81 | 14 80 | sylbid | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  ∧  𝑥  ∈  𝑊 )  →  ( 𝑈  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) | 
						
							| 82 | 81 | rexlimdva | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( ∃ 𝑥  ∈  𝑊 𝑈  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) | 
						
							| 83 | 82 | com12 | ⊢ ( ∃ 𝑥  ∈  𝑊 𝑈  =  { 𝑦  ∈  𝑊  ∣  ∃ 𝑛  ∈  ( 0 ... 𝑁 ) 𝑦  =  ( 𝑥  cyclShift  𝑛 ) }  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) | 
						
							| 84 | 3 83 | biimtrdi | ⊢ ( 𝑈  ∈  ( 𝑊  /   ∼  )  →  ( 𝑈  ∈  ( 𝑊  /   ∼  )  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) ) | 
						
							| 85 | 84 | pm2.43i | ⊢ ( 𝑈  ∈  ( 𝑊  /   ∼  )  →  ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) | 
						
							| 86 | 85 | com12 | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ℙ )  →  ( 𝑈  ∈  ( 𝑊  /   ∼  )  →  ( ♯ ‘ 𝑈 )  =  𝑁 ) ) |