| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlkndivn |  |-  ( ( G e. FinUSGraph /\ N e. Prime ) -> N || ( # ` ( N ClWWalksN G ) ) ) | 
						
							| 2 |  | fusgrusgr |  |-  ( G e. FinUSGraph -> G e. USGraph ) | 
						
							| 3 |  | usgruspgr |  |-  ( G e. USGraph -> G e. USPGraph ) | 
						
							| 4 | 2 3 | syl |  |-  ( G e. FinUSGraph -> G e. USPGraph ) | 
						
							| 5 |  | prmnn |  |-  ( N e. Prime -> N e. NN ) | 
						
							| 6 |  | clwlkssizeeq |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( # ` ( N ClWWalksN G ) ) = ( # ` { c e. ( ClWalks ` G ) | ( # ` ( 1st ` c ) ) = N } ) ) | 
						
							| 7 | 4 5 6 | syl2an |  |-  ( ( G e. FinUSGraph /\ N e. Prime ) -> ( # ` ( N ClWWalksN G ) ) = ( # ` { c e. ( ClWalks ` G ) | ( # ` ( 1st ` c ) ) = N } ) ) | 
						
							| 8 | 1 7 | breqtrd |  |-  ( ( G e. FinUSGraph /\ N e. Prime ) -> N || ( # ` { c e. ( ClWalks ` G ) | ( # ` ( 1st ` c ) ) = N } ) ) |