| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvex |  |-  ( ClWalks ` G ) e. _V | 
						
							| 2 | 1 | rabex |  |-  { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } e. _V | 
						
							| 3 | 2 | a1i |  |-  ( ( G e. USPGraph /\ N e. NN ) -> { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } e. _V ) | 
						
							| 4 |  | eqid |  |-  ( 1st ` c ) = ( 1st ` c ) | 
						
							| 5 |  | eqid |  |-  ( 2nd ` c ) = ( 2nd ` c ) | 
						
							| 6 |  | eqid |  |-  { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } = { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } | 
						
							| 7 |  | eqid |  |-  ( c e. { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) = ( c e. { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) | 
						
							| 8 | 4 5 6 7 | clwlknf1oclwwlkn |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( c e. { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } |-> ( ( 2nd ` c ) prefix ( # ` ( 1st ` c ) ) ) ) : { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } -1-1-onto-> ( N ClWWalksN G ) ) | 
						
							| 9 | 3 8 | hasheqf1od |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( # ` { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } ) = ( # ` ( N ClWWalksN G ) ) ) | 
						
							| 10 | 9 | eqcomd |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( # ` ( N ClWWalksN G ) ) = ( # ` { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } ) ) |