| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlknf1oclwwlkn.a |
|- A = ( 1st ` c ) |
| 2 |
|
clwlknf1oclwwlkn.b |
|- B = ( 2nd ` c ) |
| 3 |
|
clwlknf1oclwwlkn.c |
|- C = { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } |
| 4 |
|
clwlknf1oclwwlkn.f |
|- F = ( c e. C |-> ( B prefix ( # ` A ) ) ) |
| 5 |
|
eqid |
|- ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |
| 6 |
|
2fveq3 |
|- ( s = w -> ( # ` ( 1st ` s ) ) = ( # ` ( 1st ` w ) ) ) |
| 7 |
6
|
breq2d |
|- ( s = w -> ( 1 <_ ( # ` ( 1st ` s ) ) <-> 1 <_ ( # ` ( 1st ` w ) ) ) ) |
| 8 |
7
|
cbvrabv |
|- { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } = { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |
| 9 |
|
fveq2 |
|- ( d = c -> ( 2nd ` d ) = ( 2nd ` c ) ) |
| 10 |
|
2fveq3 |
|- ( d = c -> ( # ` ( 2nd ` d ) ) = ( # ` ( 2nd ` c ) ) ) |
| 11 |
10
|
oveq1d |
|- ( d = c -> ( ( # ` ( 2nd ` d ) ) - 1 ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) |
| 12 |
9 11
|
oveq12d |
|- ( d = c -> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |
| 13 |
12
|
cbvmptv |
|- ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) = ( c e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |
| 14 |
8 13
|
clwlkclwwlkf1o |
|- ( G e. USPGraph -> ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) : { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } -1-1-onto-> ( ClWWalks ` G ) ) |
| 15 |
14
|
adantr |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) : { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } -1-1-onto-> ( ClWWalks ` G ) ) |
| 16 |
|
2fveq3 |
|- ( w = s -> ( # ` ( 1st ` w ) ) = ( # ` ( 1st ` s ) ) ) |
| 17 |
16
|
breq2d |
|- ( w = s -> ( 1 <_ ( # ` ( 1st ` w ) ) <-> 1 <_ ( # ` ( 1st ` s ) ) ) ) |
| 18 |
17
|
cbvrabv |
|- { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } = { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |
| 19 |
18
|
mpteq1i |
|- ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( c e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |
| 20 |
|
fveq2 |
|- ( c = d -> ( 2nd ` c ) = ( 2nd ` d ) ) |
| 21 |
|
2fveq3 |
|- ( c = d -> ( # ` ( 2nd ` c ) ) = ( # ` ( 2nd ` d ) ) ) |
| 22 |
21
|
oveq1d |
|- ( c = d -> ( ( # ` ( 2nd ` c ) ) - 1 ) = ( ( # ` ( 2nd ` d ) ) - 1 ) ) |
| 23 |
20 22
|
oveq12d |
|- ( c = d -> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) = ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) |
| 24 |
23
|
cbvmptv |
|- ( c e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) |
| 25 |
19 24
|
eqtri |
|- ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) |
| 26 |
25
|
a1i |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) ) |
| 27 |
8
|
eqcomi |
|- { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } = { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |
| 28 |
27
|
a1i |
|- ( ( G e. USPGraph /\ N e. NN ) -> { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } = { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } ) |
| 29 |
|
eqidd |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( ClWWalks ` G ) = ( ClWWalks ` G ) ) |
| 30 |
26 28 29
|
f1oeq123d |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) : { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } -1-1-onto-> ( ClWWalks ` G ) <-> ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) : { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } -1-1-onto-> ( ClWWalks ` G ) ) ) |
| 31 |
15 30
|
mpbird |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) : { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } -1-1-onto-> ( ClWWalks ` G ) ) |
| 32 |
|
fveq2 |
|- ( s = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) -> ( # ` s ) = ( # ` ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) ) |
| 33 |
32
|
3ad2ant3 |
|- ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ s = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) -> ( # ` s ) = ( # ` ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) ) |
| 34 |
|
2fveq3 |
|- ( w = c -> ( # ` ( 1st ` w ) ) = ( # ` ( 1st ` c ) ) ) |
| 35 |
34
|
breq2d |
|- ( w = c -> ( 1 <_ ( # ` ( 1st ` w ) ) <-> 1 <_ ( # ` ( 1st ` c ) ) ) ) |
| 36 |
35
|
elrab |
|- ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } <-> ( c e. ( ClWalks ` G ) /\ 1 <_ ( # ` ( 1st ` c ) ) ) ) |
| 37 |
|
clwlknf1oclwwlknlem1 |
|- ( ( c e. ( ClWalks ` G ) /\ 1 <_ ( # ` ( 1st ` c ) ) ) -> ( # ` ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( # ` ( 1st ` c ) ) ) |
| 38 |
36 37
|
sylbi |
|- ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } -> ( # ` ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( # ` ( 1st ` c ) ) ) |
| 39 |
38
|
3ad2ant2 |
|- ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ s = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) -> ( # ` ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( # ` ( 1st ` c ) ) ) |
| 40 |
33 39
|
eqtrd |
|- ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ s = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) -> ( # ` s ) = ( # ` ( 1st ` c ) ) ) |
| 41 |
40
|
eqeq1d |
|- ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ s = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) -> ( ( # ` s ) = N <-> ( # ` ( 1st ` c ) ) = N ) ) |
| 42 |
5 31 41
|
f1oresrab |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |` { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) : { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } -1-1-onto-> { s e. ( ClWWalks ` G ) | ( # ` s ) = N } ) |
| 43 |
1 2 3 4
|
clwlknf1oclwwlknlem3 |
|- ( ( G e. USPGraph /\ N e. NN ) -> F = ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( B prefix ( # ` A ) ) ) |` C ) ) |
| 44 |
2
|
a1i |
|- ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } ) -> B = ( 2nd ` c ) ) |
| 45 |
|
clwlkwlk |
|- ( c e. ( ClWalks ` G ) -> c e. ( Walks ` G ) ) |
| 46 |
|
wlkcpr |
|- ( c e. ( Walks ` G ) <-> ( 1st ` c ) ( Walks ` G ) ( 2nd ` c ) ) |
| 47 |
1
|
fveq2i |
|- ( # ` A ) = ( # ` ( 1st ` c ) ) |
| 48 |
|
wlklenvm1 |
|- ( ( 1st ` c ) ( Walks ` G ) ( 2nd ` c ) -> ( # ` ( 1st ` c ) ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) |
| 49 |
47 48
|
eqtrid |
|- ( ( 1st ` c ) ( Walks ` G ) ( 2nd ` c ) -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) |
| 50 |
46 49
|
sylbi |
|- ( c e. ( Walks ` G ) -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) |
| 51 |
45 50
|
syl |
|- ( c e. ( ClWalks ` G ) -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) |
| 52 |
51
|
adantr |
|- ( ( c e. ( ClWalks ` G ) /\ 1 <_ ( # ` ( 1st ` c ) ) ) -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) |
| 53 |
36 52
|
sylbi |
|- ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) |
| 54 |
53
|
adantl |
|- ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } ) -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) |
| 55 |
44 54
|
oveq12d |
|- ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } ) -> ( B prefix ( # ` A ) ) = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |
| 56 |
55
|
mpteq2dva |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( B prefix ( # ` A ) ) ) = ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) ) |
| 57 |
34
|
eqeq1d |
|- ( w = c -> ( ( # ` ( 1st ` w ) ) = N <-> ( # ` ( 1st ` c ) ) = N ) ) |
| 58 |
57
|
cbvrabv |
|- { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } = { c e. ( ClWalks ` G ) | ( # ` ( 1st ` c ) ) = N } |
| 59 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
| 60 |
|
breq2 |
|- ( ( # ` ( 1st ` c ) ) = N -> ( 1 <_ ( # ` ( 1st ` c ) ) <-> 1 <_ N ) ) |
| 61 |
59 60
|
syl5ibrcom |
|- ( N e. NN -> ( ( # ` ( 1st ` c ) ) = N -> 1 <_ ( # ` ( 1st ` c ) ) ) ) |
| 62 |
61
|
adantl |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( ( # ` ( 1st ` c ) ) = N -> 1 <_ ( # ` ( 1st ` c ) ) ) ) |
| 63 |
62
|
adantr |
|- ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. ( ClWalks ` G ) ) -> ( ( # ` ( 1st ` c ) ) = N -> 1 <_ ( # ` ( 1st ` c ) ) ) ) |
| 64 |
63
|
pm4.71rd |
|- ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. ( ClWalks ` G ) ) -> ( ( # ` ( 1st ` c ) ) = N <-> ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) ) ) |
| 65 |
64
|
rabbidva |
|- ( ( G e. USPGraph /\ N e. NN ) -> { c e. ( ClWalks ` G ) | ( # ` ( 1st ` c ) ) = N } = { c e. ( ClWalks ` G ) | ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) } ) |
| 66 |
58 65
|
eqtrid |
|- ( ( G e. USPGraph /\ N e. NN ) -> { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } = { c e. ( ClWalks ` G ) | ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) } ) |
| 67 |
36
|
anbi1i |
|- ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ ( # ` ( 1st ` c ) ) = N ) <-> ( ( c e. ( ClWalks ` G ) /\ 1 <_ ( # ` ( 1st ` c ) ) ) /\ ( # ` ( 1st ` c ) ) = N ) ) |
| 68 |
|
anass |
|- ( ( ( c e. ( ClWalks ` G ) /\ 1 <_ ( # ` ( 1st ` c ) ) ) /\ ( # ` ( 1st ` c ) ) = N ) <-> ( c e. ( ClWalks ` G ) /\ ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) ) ) |
| 69 |
67 68
|
bitri |
|- ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ ( # ` ( 1st ` c ) ) = N ) <-> ( c e. ( ClWalks ` G ) /\ ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) ) ) |
| 70 |
69
|
rabbia2 |
|- { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } = { c e. ( ClWalks ` G ) | ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) } |
| 71 |
66 3 70
|
3eqtr4g |
|- ( ( G e. USPGraph /\ N e. NN ) -> C = { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) |
| 72 |
56 71
|
reseq12d |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( B prefix ( # ` A ) ) ) |` C ) = ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |` { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) ) |
| 73 |
43 72
|
eqtrd |
|- ( ( G e. USPGraph /\ N e. NN ) -> F = ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |` { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) ) |
| 74 |
|
clwlknf1oclwwlknlem2 |
|- ( N e. NN -> { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } = { c e. ( ClWalks ` G ) | ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) } ) |
| 75 |
74
|
adantl |
|- ( ( G e. USPGraph /\ N e. NN ) -> { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } = { c e. ( ClWalks ` G ) | ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) } ) |
| 76 |
75 3 70
|
3eqtr4g |
|- ( ( G e. USPGraph /\ N e. NN ) -> C = { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) |
| 77 |
|
clwwlkn |
|- ( N ClWWalksN G ) = { s e. ( ClWWalks ` G ) | ( # ` s ) = N } |
| 78 |
77
|
a1i |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( N ClWWalksN G ) = { s e. ( ClWWalks ` G ) | ( # ` s ) = N } ) |
| 79 |
73 76 78
|
f1oeq123d |
|- ( ( G e. USPGraph /\ N e. NN ) -> ( F : C -1-1-onto-> ( N ClWWalksN G ) <-> ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |` { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) : { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } -1-1-onto-> { s e. ( ClWWalks ` G ) | ( # ` s ) = N } ) ) |
| 80 |
42 79
|
mpbird |
|- ( ( G e. USPGraph /\ N e. NN ) -> F : C -1-1-onto-> ( N ClWWalksN G ) ) |