| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlknf1oclwwlkn.a |  |-  A = ( 1st ` c ) | 
						
							| 2 |  | clwlknf1oclwwlkn.b |  |-  B = ( 2nd ` c ) | 
						
							| 3 |  | clwlknf1oclwwlkn.c |  |-  C = { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } | 
						
							| 4 |  | clwlknf1oclwwlkn.f |  |-  F = ( c e. C |-> ( B prefix ( # ` A ) ) ) | 
						
							| 5 |  | eqid |  |-  ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) | 
						
							| 6 |  | 2fveq3 |  |-  ( s = w -> ( # ` ( 1st ` s ) ) = ( # ` ( 1st ` w ) ) ) | 
						
							| 7 | 6 | breq2d |  |-  ( s = w -> ( 1 <_ ( # ` ( 1st ` s ) ) <-> 1 <_ ( # ` ( 1st ` w ) ) ) ) | 
						
							| 8 | 7 | cbvrabv |  |-  { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } = { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | 
						
							| 9 |  | fveq2 |  |-  ( d = c -> ( 2nd ` d ) = ( 2nd ` c ) ) | 
						
							| 10 |  | 2fveq3 |  |-  ( d = c -> ( # ` ( 2nd ` d ) ) = ( # ` ( 2nd ` c ) ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( d = c -> ( ( # ` ( 2nd ` d ) ) - 1 ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) | 
						
							| 12 | 9 11 | oveq12d |  |-  ( d = c -> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) | 
						
							| 13 | 12 | cbvmptv |  |-  ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) = ( c e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) | 
						
							| 14 | 8 13 | clwlkclwwlkf1o |  |-  ( G e. USPGraph -> ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) : { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } -1-1-onto-> ( ClWWalks ` G ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) : { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } -1-1-onto-> ( ClWWalks ` G ) ) | 
						
							| 16 |  | 2fveq3 |  |-  ( w = s -> ( # ` ( 1st ` w ) ) = ( # ` ( 1st ` s ) ) ) | 
						
							| 17 | 16 | breq2d |  |-  ( w = s -> ( 1 <_ ( # ` ( 1st ` w ) ) <-> 1 <_ ( # ` ( 1st ` s ) ) ) ) | 
						
							| 18 | 17 | cbvrabv |  |-  { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } = { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } | 
						
							| 19 | 18 | mpteq1i |  |-  ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( c e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( c = d -> ( 2nd ` c ) = ( 2nd ` d ) ) | 
						
							| 21 |  | 2fveq3 |  |-  ( c = d -> ( # ` ( 2nd ` c ) ) = ( # ` ( 2nd ` d ) ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( c = d -> ( ( # ` ( 2nd ` c ) ) - 1 ) = ( ( # ` ( 2nd ` d ) ) - 1 ) ) | 
						
							| 23 | 20 22 | oveq12d |  |-  ( c = d -> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) = ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) | 
						
							| 24 | 23 | cbvmptv |  |-  ( c e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) | 
						
							| 25 | 19 24 | eqtri |  |-  ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) | 
						
							| 26 | 25 | a1i |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) ) | 
						
							| 27 | 8 | eqcomi |  |-  { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } = { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } | 
						
							| 28 | 27 | a1i |  |-  ( ( G e. USPGraph /\ N e. NN ) -> { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } = { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } ) | 
						
							| 29 |  | eqidd |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( ClWWalks ` G ) = ( ClWWalks ` G ) ) | 
						
							| 30 | 26 28 29 | f1oeq123d |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) : { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } -1-1-onto-> ( ClWWalks ` G ) <-> ( d e. { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } |-> ( ( 2nd ` d ) prefix ( ( # ` ( 2nd ` d ) ) - 1 ) ) ) : { s e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` s ) ) } -1-1-onto-> ( ClWWalks ` G ) ) ) | 
						
							| 31 | 15 30 | mpbird |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) : { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } -1-1-onto-> ( ClWWalks ` G ) ) | 
						
							| 32 |  | fveq2 |  |-  ( s = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) -> ( # ` s ) = ( # ` ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) ) | 
						
							| 33 | 32 | 3ad2ant3 |  |-  ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ s = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) -> ( # ` s ) = ( # ` ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) ) | 
						
							| 34 |  | 2fveq3 |  |-  ( w = c -> ( # ` ( 1st ` w ) ) = ( # ` ( 1st ` c ) ) ) | 
						
							| 35 | 34 | breq2d |  |-  ( w = c -> ( 1 <_ ( # ` ( 1st ` w ) ) <-> 1 <_ ( # ` ( 1st ` c ) ) ) ) | 
						
							| 36 | 35 | elrab |  |-  ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } <-> ( c e. ( ClWalks ` G ) /\ 1 <_ ( # ` ( 1st ` c ) ) ) ) | 
						
							| 37 |  | clwlknf1oclwwlknlem1 |  |-  ( ( c e. ( ClWalks ` G ) /\ 1 <_ ( # ` ( 1st ` c ) ) ) -> ( # ` ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( # ` ( 1st ` c ) ) ) | 
						
							| 38 | 36 37 | sylbi |  |-  ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } -> ( # ` ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( # ` ( 1st ` c ) ) ) | 
						
							| 39 | 38 | 3ad2ant2 |  |-  ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ s = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) -> ( # ` ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) = ( # ` ( 1st ` c ) ) ) | 
						
							| 40 | 33 39 | eqtrd |  |-  ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ s = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) -> ( # ` s ) = ( # ` ( 1st ` c ) ) ) | 
						
							| 41 | 40 | eqeq1d |  |-  ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ s = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) -> ( ( # ` s ) = N <-> ( # ` ( 1st ` c ) ) = N ) ) | 
						
							| 42 | 5 31 41 | f1oresrab |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |` { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) : { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } -1-1-onto-> { s e. ( ClWWalks ` G ) | ( # ` s ) = N } ) | 
						
							| 43 | 1 2 3 4 | clwlknf1oclwwlknlem3 |  |-  ( ( G e. USPGraph /\ N e. NN ) -> F = ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( B prefix ( # ` A ) ) ) |` C ) ) | 
						
							| 44 | 2 | a1i |  |-  ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } ) -> B = ( 2nd ` c ) ) | 
						
							| 45 |  | clwlkwlk |  |-  ( c e. ( ClWalks ` G ) -> c e. ( Walks ` G ) ) | 
						
							| 46 |  | wlkcpr |  |-  ( c e. ( Walks ` G ) <-> ( 1st ` c ) ( Walks ` G ) ( 2nd ` c ) ) | 
						
							| 47 | 1 | fveq2i |  |-  ( # ` A ) = ( # ` ( 1st ` c ) ) | 
						
							| 48 |  | wlklenvm1 |  |-  ( ( 1st ` c ) ( Walks ` G ) ( 2nd ` c ) -> ( # ` ( 1st ` c ) ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) | 
						
							| 49 | 47 48 | eqtrid |  |-  ( ( 1st ` c ) ( Walks ` G ) ( 2nd ` c ) -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) | 
						
							| 50 | 46 49 | sylbi |  |-  ( c e. ( Walks ` G ) -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) | 
						
							| 51 | 45 50 | syl |  |-  ( c e. ( ClWalks ` G ) -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( c e. ( ClWalks ` G ) /\ 1 <_ ( # ` ( 1st ` c ) ) ) -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) | 
						
							| 53 | 36 52 | sylbi |  |-  ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } ) -> ( # ` A ) = ( ( # ` ( 2nd ` c ) ) - 1 ) ) | 
						
							| 55 | 44 54 | oveq12d |  |-  ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } ) -> ( B prefix ( # ` A ) ) = ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) | 
						
							| 56 | 55 | mpteq2dva |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( B prefix ( # ` A ) ) ) = ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) ) | 
						
							| 57 | 34 | eqeq1d |  |-  ( w = c -> ( ( # ` ( 1st ` w ) ) = N <-> ( # ` ( 1st ` c ) ) = N ) ) | 
						
							| 58 | 57 | cbvrabv |  |-  { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } = { c e. ( ClWalks ` G ) | ( # ` ( 1st ` c ) ) = N } | 
						
							| 59 |  | nnge1 |  |-  ( N e. NN -> 1 <_ N ) | 
						
							| 60 |  | breq2 |  |-  ( ( # ` ( 1st ` c ) ) = N -> ( 1 <_ ( # ` ( 1st ` c ) ) <-> 1 <_ N ) ) | 
						
							| 61 | 59 60 | syl5ibrcom |  |-  ( N e. NN -> ( ( # ` ( 1st ` c ) ) = N -> 1 <_ ( # ` ( 1st ` c ) ) ) ) | 
						
							| 62 | 61 | adantl |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( ( # ` ( 1st ` c ) ) = N -> 1 <_ ( # ` ( 1st ` c ) ) ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. ( ClWalks ` G ) ) -> ( ( # ` ( 1st ` c ) ) = N -> 1 <_ ( # ` ( 1st ` c ) ) ) ) | 
						
							| 64 | 63 | pm4.71rd |  |-  ( ( ( G e. USPGraph /\ N e. NN ) /\ c e. ( ClWalks ` G ) ) -> ( ( # ` ( 1st ` c ) ) = N <-> ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) ) ) | 
						
							| 65 | 64 | rabbidva |  |-  ( ( G e. USPGraph /\ N e. NN ) -> { c e. ( ClWalks ` G ) | ( # ` ( 1st ` c ) ) = N } = { c e. ( ClWalks ` G ) | ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) } ) | 
						
							| 66 | 58 65 | eqtrid |  |-  ( ( G e. USPGraph /\ N e. NN ) -> { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } = { c e. ( ClWalks ` G ) | ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) } ) | 
						
							| 67 | 36 | anbi1i |  |-  ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ ( # ` ( 1st ` c ) ) = N ) <-> ( ( c e. ( ClWalks ` G ) /\ 1 <_ ( # ` ( 1st ` c ) ) ) /\ ( # ` ( 1st ` c ) ) = N ) ) | 
						
							| 68 |  | anass |  |-  ( ( ( c e. ( ClWalks ` G ) /\ 1 <_ ( # ` ( 1st ` c ) ) ) /\ ( # ` ( 1st ` c ) ) = N ) <-> ( c e. ( ClWalks ` G ) /\ ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) ) ) | 
						
							| 69 | 67 68 | bitri |  |-  ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } /\ ( # ` ( 1st ` c ) ) = N ) <-> ( c e. ( ClWalks ` G ) /\ ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) ) ) | 
						
							| 70 | 69 | rabbia2 |  |-  { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } = { c e. ( ClWalks ` G ) | ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) } | 
						
							| 71 | 66 3 70 | 3eqtr4g |  |-  ( ( G e. USPGraph /\ N e. NN ) -> C = { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) | 
						
							| 72 | 56 71 | reseq12d |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( B prefix ( # ` A ) ) ) |` C ) = ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |` { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) ) | 
						
							| 73 | 43 72 | eqtrd |  |-  ( ( G e. USPGraph /\ N e. NN ) -> F = ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |` { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) ) | 
						
							| 74 |  | clwlknf1oclwwlknlem2 |  |-  ( N e. NN -> { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } = { c e. ( ClWalks ` G ) | ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) } ) | 
						
							| 75 | 74 | adantl |  |-  ( ( G e. USPGraph /\ N e. NN ) -> { w e. ( ClWalks ` G ) | ( # ` ( 1st ` w ) ) = N } = { c e. ( ClWalks ` G ) | ( 1 <_ ( # ` ( 1st ` c ) ) /\ ( # ` ( 1st ` c ) ) = N ) } ) | 
						
							| 76 | 75 3 70 | 3eqtr4g |  |-  ( ( G e. USPGraph /\ N e. NN ) -> C = { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) | 
						
							| 77 |  | clwwlkn |  |-  ( N ClWWalksN G ) = { s e. ( ClWWalks ` G ) | ( # ` s ) = N } | 
						
							| 78 | 77 | a1i |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( N ClWWalksN G ) = { s e. ( ClWWalks ` G ) | ( # ` s ) = N } ) | 
						
							| 79 | 73 76 78 | f1oeq123d |  |-  ( ( G e. USPGraph /\ N e. NN ) -> ( F : C -1-1-onto-> ( N ClWWalksN G ) <-> ( ( c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |` { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } ) : { c e. { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | ( # ` ( 1st ` c ) ) = N } -1-1-onto-> { s e. ( ClWWalks ` G ) | ( # ` s ) = N } ) ) | 
						
							| 80 | 42 79 | mpbird |  |-  ( ( G e. USPGraph /\ N e. NN ) -> F : C -1-1-onto-> ( N ClWWalksN G ) ) |