| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknnn | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 2 | clwwlknbp | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) ) | 
						
							| 4 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 5 | 2 4 | clwwlknp | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 6 |  | 3simpc | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 8 |  | eqid | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) } | 
						
							| 9 | 8 | clwwlkel | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) } ) | 
						
							| 10 | 1 3 7 9 | syl3anc | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( lastS ‘ 𝑤 )  =  ( 𝑤 ‘ 0 ) } ) |