| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknnn |  |-  ( W e. ( N ClWWalksN G ) -> N e. NN ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 2 | clwwlknbp |  |-  ( W e. ( N ClWWalksN G ) -> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) ) | 
						
							| 4 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 5 | 2 4 | clwwlknp |  |-  ( W e. ( N ClWWalksN G ) -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 6 |  | 3simpc |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( W e. ( N ClWWalksN G ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 8 |  | eqid |  |-  { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } = { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } | 
						
							| 9 | 8 | clwwlkel |  |-  ( ( N e. NN /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) -> ( W ++ <" ( W ` 0 ) "> ) e. { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } ) | 
						
							| 10 | 1 3 7 9 | syl3anc |  |-  ( W e. ( N ClWWalksN G ) -> ( W ++ <" ( W ` 0 ) "> ) e. { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } ) |