| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlkf1o.d |  |-  D = { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } | 
						
							| 2 |  | ccatws1n0 |  |-  ( P e. Word ( Vtx ` G ) -> ( P ++ <" ( P ` 0 ) "> ) =/= (/) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( P ++ <" ( P ` 0 ) "> ) =/= (/) ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) =/= (/) ) | 
						
							| 5 |  | simprl |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> P e. Word ( Vtx ` G ) ) | 
						
							| 6 |  | fstwrdne0 |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ` 0 ) e. ( Vtx ` G ) ) | 
						
							| 7 | 6 | s1cld |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) | 
						
							| 8 |  | ccatcl |  |-  ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) ) | 
						
							| 9 | 5 7 8 | syl2anc |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) ) | 
						
							| 10 | 9 | 3adant3 |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) ) | 
						
							| 11 | 5 | adantr |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> P e. Word ( Vtx ` G ) ) | 
						
							| 12 | 7 | adantr |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) | 
						
							| 13 |  | elfzonn0 |  |-  ( i e. ( 0 ..^ ( N - 1 ) ) -> i e. NN0 ) | 
						
							| 14 | 13 | adantl |  |-  ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. NN0 ) | 
						
							| 15 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 16 | 15 | adantr |  |-  ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> N e. ZZ ) | 
						
							| 17 |  | elfzo0 |  |-  ( i e. ( 0 ..^ ( N - 1 ) ) <-> ( i e. NN0 /\ ( N - 1 ) e. NN /\ i < ( N - 1 ) ) ) | 
						
							| 18 |  | nn0re |  |-  ( i e. NN0 -> i e. RR ) | 
						
							| 19 | 18 | adantr |  |-  ( ( i e. NN0 /\ N e. NN ) -> i e. RR ) | 
						
							| 20 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 21 |  | peano2rem |  |-  ( N e. RR -> ( N - 1 ) e. RR ) | 
						
							| 22 | 20 21 | syl |  |-  ( N e. NN -> ( N - 1 ) e. RR ) | 
						
							| 23 | 22 | adantl |  |-  ( ( i e. NN0 /\ N e. NN ) -> ( N - 1 ) e. RR ) | 
						
							| 24 | 20 | adantl |  |-  ( ( i e. NN0 /\ N e. NN ) -> N e. RR ) | 
						
							| 25 | 19 23 24 | 3jca |  |-  ( ( i e. NN0 /\ N e. NN ) -> ( i e. RR /\ ( N - 1 ) e. RR /\ N e. RR ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( i e. NN0 /\ N e. NN ) /\ i < ( N - 1 ) ) -> ( i e. RR /\ ( N - 1 ) e. RR /\ N e. RR ) ) | 
						
							| 27 | 20 | ltm1d |  |-  ( N e. NN -> ( N - 1 ) < N ) | 
						
							| 28 | 27 | adantl |  |-  ( ( i e. NN0 /\ N e. NN ) -> ( N - 1 ) < N ) | 
						
							| 29 | 28 | anim1ci |  |-  ( ( ( i e. NN0 /\ N e. NN ) /\ i < ( N - 1 ) ) -> ( i < ( N - 1 ) /\ ( N - 1 ) < N ) ) | 
						
							| 30 |  | lttr |  |-  ( ( i e. RR /\ ( N - 1 ) e. RR /\ N e. RR ) -> ( ( i < ( N - 1 ) /\ ( N - 1 ) < N ) -> i < N ) ) | 
						
							| 31 | 26 29 30 | sylc |  |-  ( ( ( i e. NN0 /\ N e. NN ) /\ i < ( N - 1 ) ) -> i < N ) | 
						
							| 32 | 31 | ex |  |-  ( ( i e. NN0 /\ N e. NN ) -> ( i < ( N - 1 ) -> i < N ) ) | 
						
							| 33 | 32 | impancom |  |-  ( ( i e. NN0 /\ i < ( N - 1 ) ) -> ( N e. NN -> i < N ) ) | 
						
							| 34 | 33 | 3adant2 |  |-  ( ( i e. NN0 /\ ( N - 1 ) e. NN /\ i < ( N - 1 ) ) -> ( N e. NN -> i < N ) ) | 
						
							| 35 | 17 34 | sylbi |  |-  ( i e. ( 0 ..^ ( N - 1 ) ) -> ( N e. NN -> i < N ) ) | 
						
							| 36 | 35 | impcom |  |-  ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i < N ) | 
						
							| 37 |  | elfzo0z |  |-  ( i e. ( 0 ..^ N ) <-> ( i e. NN0 /\ N e. ZZ /\ i < N ) ) | 
						
							| 38 | 14 16 36 37 | syl3anbrc |  |-  ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. ( 0 ..^ N ) ) | 
						
							| 39 | 38 | adantlr |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. ( 0 ..^ N ) ) | 
						
							| 40 |  | oveq2 |  |-  ( ( # ` P ) = N -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ N ) ) | 
						
							| 41 | 40 | eleq2d |  |-  ( ( # ` P ) = N -> ( i e. ( 0 ..^ ( # ` P ) ) <-> i e. ( 0 ..^ N ) ) ) | 
						
							| 42 | 41 | ad2antll |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( i e. ( 0 ..^ ( # ` P ) ) <-> i e. ( 0 ..^ N ) ) ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i e. ( 0 ..^ ( # ` P ) ) <-> i e. ( 0 ..^ N ) ) ) | 
						
							| 44 | 39 43 | mpbird |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. ( 0 ..^ ( # ` P ) ) ) | 
						
							| 45 |  | ccatval1 |  |-  ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ i e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` i ) = ( P ` i ) ) | 
						
							| 46 | 11 12 44 45 | syl3anc |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` i ) = ( P ` i ) ) | 
						
							| 47 |  | elfzom1p1elfzo |  |-  ( ( N e. NN /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ N ) ) | 
						
							| 48 | 47 | adantlr |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ N ) ) | 
						
							| 49 | 40 | ad2antll |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ N ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ N ) ) | 
						
							| 51 | 48 50 | eleqtrrd |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ ( # ` P ) ) ) | 
						
							| 52 |  | ccatval1 |  |-  ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ ( i + 1 ) e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) = ( P ` ( i + 1 ) ) ) | 
						
							| 53 | 11 12 51 52 | syl3anc |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) = ( P ` ( i + 1 ) ) ) | 
						
							| 54 | 46 53 | preq12d |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) | 
						
							| 55 | 54 | eleq1d |  |-  ( ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 56 | 55 | ralbidva |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 57 | 56 | biimprcd |  |-  ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 59 | 58 | expdcom |  |-  ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 60 | 59 | 3imp |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 61 |  | fzo0end |  |-  ( N e. NN -> ( N - 1 ) e. ( 0 ..^ N ) ) | 
						
							| 62 | 40 | eleq2d |  |-  ( ( # ` P ) = N -> ( ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) <-> ( N - 1 ) e. ( 0 ..^ N ) ) ) | 
						
							| 63 | 62 | adantl |  |-  ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) <-> ( N - 1 ) e. ( 0 ..^ N ) ) ) | 
						
							| 64 | 61 63 | syl5ibrcom |  |-  ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) ) ) | 
						
							| 65 | 64 | imp |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) ) | 
						
							| 66 |  | ccatval1 |  |-  ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ ( N - 1 ) e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) = ( P ` ( N - 1 ) ) ) | 
						
							| 67 | 5 7 65 66 | syl3anc |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) = ( P ` ( N - 1 ) ) ) | 
						
							| 68 |  | lsw |  |-  ( P e. Word ( Vtx ` G ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) | 
						
							| 69 | 68 | adantr |  |-  ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) | 
						
							| 70 |  | fvoveq1 |  |-  ( ( # ` P ) = N -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( N - 1 ) ) ) | 
						
							| 71 | 70 | adantl |  |-  ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( N - 1 ) ) ) | 
						
							| 72 | 69 71 | eqtr2d |  |-  ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( P ` ( N - 1 ) ) = ( lastS ` P ) ) | 
						
							| 73 | 72 | adantl |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ` ( N - 1 ) ) = ( lastS ` P ) ) | 
						
							| 74 | 67 73 | eqtr2d |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( lastS ` P ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) ) | 
						
							| 75 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 76 |  | 1cnd |  |-  ( N e. NN -> 1 e. CC ) | 
						
							| 77 | 75 76 | npcand |  |-  ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 78 | 77 | fveq2d |  |-  ( N e. NN -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) | 
						
							| 80 |  | fveq2 |  |-  ( ( # ` P ) = N -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) | 
						
							| 81 | 80 | ad2antll |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` N ) ) | 
						
							| 82 |  | ccatws1ls |  |-  ( ( P e. Word ( Vtx ` G ) /\ ( P ` 0 ) e. ( Vtx ` G ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( P ` 0 ) ) | 
						
							| 83 | 5 6 82 | syl2anc |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( # ` P ) ) = ( P ` 0 ) ) | 
						
							| 84 | 79 81 83 | 3eqtr2rd |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( P ` 0 ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) ) | 
						
							| 85 | 74 84 | preq12d |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> { ( lastS ` P ) , ( P ` 0 ) } = { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } ) | 
						
							| 86 | 85 | eleq1d |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) <-> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 87 | 86 | biimpcd |  |-  ( { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 88 | 87 | adantl |  |-  ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 89 | 88 | expdcom |  |-  ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 90 | 89 | 3imp |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 91 |  | ovex |  |-  ( N - 1 ) e. _V | 
						
							| 92 |  | fveq2 |  |-  ( i = ( N - 1 ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` i ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) ) | 
						
							| 93 |  | fvoveq1 |  |-  ( i = ( N - 1 ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) ) | 
						
							| 94 | 92 93 | preq12d |  |-  ( i = ( N - 1 ) -> { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } = { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } ) | 
						
							| 95 | 94 | eleq1d |  |-  ( i = ( N - 1 ) -> ( { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 96 | 91 95 | ralsn |  |-  ( A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( P ++ <" ( P ` 0 ) "> ) ` ( N - 1 ) ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( ( N - 1 ) + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 97 | 90 96 | sylibr |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 98 | 75 76 76 | addsubd |  |-  ( N e. NN -> ( ( N + 1 ) - 1 ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 99 | 98 | oveq2d |  |-  ( N e. NN -> ( 0 ..^ ( ( N + 1 ) - 1 ) ) = ( 0 ..^ ( ( N - 1 ) + 1 ) ) ) | 
						
							| 100 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 101 |  | elnn0uz |  |-  ( ( N - 1 ) e. NN0 <-> ( N - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 102 | 100 101 | sylib |  |-  ( N e. NN -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 103 |  | fzosplitsn |  |-  ( ( N - 1 ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( N - 1 ) + 1 ) ) = ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) ) | 
						
							| 104 | 102 103 | syl |  |-  ( N e. NN -> ( 0 ..^ ( ( N - 1 ) + 1 ) ) = ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) ) | 
						
							| 105 | 99 104 | eqtrd |  |-  ( N e. NN -> ( 0 ..^ ( ( N + 1 ) - 1 ) ) = ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) ) | 
						
							| 106 | 105 | raleqdv |  |-  ( N e. NN -> ( A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 107 |  | ralunb |  |-  ( A. i e. ( ( 0 ..^ ( N - 1 ) ) u. { ( N - 1 ) } ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 108 | 106 107 | bitrdi |  |-  ( N e. NN -> ( A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 109 | 108 | 3ad2ant1 |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( N - 1 ) } { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 110 | 60 97 109 | mpbir2and |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 111 |  | ccatlen |  |-  ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) | 
						
							| 112 | 5 7 111 | syl2anc |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) ) | 
						
							| 113 |  | id |  |-  ( ( # ` P ) = N -> ( # ` P ) = N ) | 
						
							| 114 |  | s1len |  |-  ( # ` <" ( P ` 0 ) "> ) = 1 | 
						
							| 115 | 114 | a1i |  |-  ( ( # ` P ) = N -> ( # ` <" ( P ` 0 ) "> ) = 1 ) | 
						
							| 116 | 113 115 | oveq12d |  |-  ( ( # ` P ) = N -> ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) | 
						
							| 117 | 116 | ad2antll |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( # ` P ) + ( # ` <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) | 
						
							| 118 | 112 117 | eqtrd |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) | 
						
							| 119 | 118 | 3adant3 |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) | 
						
							| 120 | 119 | oveq1d |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) = ( ( N + 1 ) - 1 ) ) | 
						
							| 121 | 120 | oveq2d |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) = ( 0 ..^ ( ( N + 1 ) - 1 ) ) ) | 
						
							| 122 | 121 | raleqdv |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ ( ( N + 1 ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 123 | 110 122 | mpbird |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 124 | 4 10 123 | 3jca |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 125 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 126 |  | iswwlksn |  |-  ( N e. NN0 -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) | 
						
							| 127 | 125 126 | syl |  |-  ( N e. NN -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) | 
						
							| 128 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 129 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 130 | 128 129 | iswwlks |  |-  ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) <-> ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 131 | 130 | anbi1i |  |-  ( ( ( P ++ <" ( P ` 0 ) "> ) e. ( WWalks ` G ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) <-> ( ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) | 
						
							| 132 | 127 131 | bitrdi |  |-  ( N e. NN -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) | 
						
							| 133 | 132 | 3ad2ant1 |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) <-> ( ( ( P ++ <" ( P ` 0 ) "> ) =/= (/) /\ ( P ++ <" ( P ` 0 ) "> ) e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` ( P ++ <" ( P ` 0 ) "> ) ) - 1 ) ) { ( ( P ++ <" ( P ` 0 ) "> ) ` i ) , ( ( P ++ <" ( P ` 0 ) "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` ( P ++ <" ( P ` 0 ) "> ) ) = ( N + 1 ) ) ) ) | 
						
							| 134 | 124 119 133 | mpbir2and |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) ) | 
						
							| 135 |  | lswccats1 |  |-  ( ( P e. Word ( Vtx ` G ) /\ ( P ` 0 ) e. ( Vtx ` G ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) | 
						
							| 136 | 5 6 135 | syl2anc |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) | 
						
							| 137 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ N ) <-> N e. NN ) | 
						
							| 138 | 137 | biimpri |  |-  ( N e. NN -> 0 e. ( 0 ..^ N ) ) | 
						
							| 139 | 40 | eleq2d |  |-  ( ( # ` P ) = N -> ( 0 e. ( 0 ..^ ( # ` P ) ) <-> 0 e. ( 0 ..^ N ) ) ) | 
						
							| 140 | 139 | adantl |  |-  ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> ( 0 e. ( 0 ..^ ( # ` P ) ) <-> 0 e. ( 0 ..^ N ) ) ) | 
						
							| 141 | 138 140 | syl5ibrcom |  |-  ( N e. NN -> ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) -> 0 e. ( 0 ..^ ( # ` P ) ) ) ) | 
						
							| 142 | 141 | imp |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> 0 e. ( 0 ..^ ( # ` P ) ) ) | 
						
							| 143 |  | ccatval1 |  |-  ( ( P e. Word ( Vtx ` G ) /\ <" ( P ` 0 ) "> e. Word ( Vtx ` G ) /\ 0 e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) | 
						
							| 144 | 5 7 142 143 | syl3anc |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) | 
						
							| 145 | 136 144 | eqtr4d |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) | 
						
							| 146 | 145 | 3adant3 |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) | 
						
							| 147 |  | fveq2 |  |-  ( w = ( P ++ <" ( P ` 0 ) "> ) -> ( lastS ` w ) = ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) ) | 
						
							| 148 |  | fveq1 |  |-  ( w = ( P ++ <" ( P ` 0 ) "> ) -> ( w ` 0 ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) | 
						
							| 149 | 147 148 | eqeq12d |  |-  ( w = ( P ++ <" ( P ` 0 ) "> ) -> ( ( lastS ` w ) = ( w ` 0 ) <-> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) ) | 
						
							| 150 | 149 1 | elrab2 |  |-  ( ( P ++ <" ( P ` 0 ) "> ) e. D <-> ( ( P ++ <" ( P ` 0 ) "> ) e. ( N WWalksN G ) /\ ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) ) | 
						
							| 151 | 134 146 150 | sylanbrc |  |-  ( ( N e. NN /\ ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` P ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) -> ( P ++ <" ( P ` 0 ) "> ) e. D ) |