Metamath Proof Explorer


Theorem cnextrel

Description: In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017)

Ref Expression
Hypotheses cnextfrel.1 𝐶 = 𝐽
cnextfrel.2 𝐵 = 𝐾
Assertion cnextrel ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴𝐵𝐴𝐶 ) ) → Rel ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 cnextfrel.1 𝐶 = 𝐽
2 cnextfrel.2 𝐵 = 𝐾
3 relxp Rel ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) )
4 3 rgenw 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) Rel ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) )
5 reliun ( Rel 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) Rel ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) )
6 4 5 mpbir Rel 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) )
7 1 2 cnextfval ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴𝐵𝐴𝐶 ) ) → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) )
8 7 releqd ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴𝐵𝐴𝐶 ) ) → ( Rel ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↔ Rel 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) )
9 6 8 mpbiri ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴𝐵𝐴𝐶 ) ) → Rel ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) )