Metamath Proof Explorer


Theorem cnfldinv

Description: The multiplicative inverse in the field of complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Assertion cnfldinv ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) )

Proof

Step Hyp Ref Expression
1 eldifsn ( 𝑋 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) )
2 cnring fld ∈ Ring
3 cnfldbas ℂ = ( Base ‘ ℂfld )
4 cnfld0 0 = ( 0g ‘ ℂfld )
5 cndrng fld ∈ DivRing
6 3 4 5 drngui ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld )
7 cnflddiv / = ( /r ‘ ℂfld )
8 cnfld1 1 = ( 1r ‘ ℂfld )
9 eqid ( invr ‘ ℂfld ) = ( invr ‘ ℂfld )
10 3 6 7 8 9 ringinvdv ( ( ℂfld ∈ Ring ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) )
11 2 10 mpan ( 𝑋 ∈ ( ℂ ∖ { 0 } ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) )
12 1 11 sylbir ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) )