Description: The complex numbers form a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnngp | ⊢ ℂfld ∈ NrmGrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring | ⊢ ℂfld ∈ Ring | |
| 2 | ringgrp | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Grp ) | |
| 3 | 1 2 | ax-mp | ⊢ ℂfld ∈ Grp |
| 4 | cnfldms | ⊢ ℂfld ∈ MetSp | |
| 5 | ssid | ⊢ ( abs ∘ − ) ⊆ ( abs ∘ − ) | |
| 6 | cnfldnm | ⊢ abs = ( norm ‘ ℂfld ) | |
| 7 | cnfldsub | ⊢ − = ( -g ‘ ℂfld ) | |
| 8 | cnfldds | ⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) | |
| 9 | 6 7 8 | isngp | ⊢ ( ℂfld ∈ NrmGrp ↔ ( ℂfld ∈ Grp ∧ ℂfld ∈ MetSp ∧ ( abs ∘ − ) ⊆ ( abs ∘ − ) ) ) |
| 10 | 3 4 5 9 | mpbir3an | ⊢ ℂfld ∈ NrmGrp |