Metamath Proof Explorer


Theorem cnvssco

Description: A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020)

Ref Expression
Assertion cnvssco ( 𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝑦𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐶 𝑧𝑧 𝐵 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 alcom ( ∀ 𝑦𝑥 ( ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐴 → ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐵𝐶 ) ) ↔ ∀ 𝑥𝑦 ( ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐴 → ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐵𝐶 ) ) )
2 relcnv Rel 𝐴
3 ssrel ( Rel 𝐴 → ( 𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑦𝑥 ( ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐴 → ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐵𝐶 ) ) ) )
4 2 3 ax-mp ( 𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑦𝑥 ( ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐴 → ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐵𝐶 ) ) )
5 19.37v ( ∃ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐶 𝑧𝑧 𝐵 𝑦 ) ) ↔ ( 𝑥 𝐴 𝑦 → ∃ 𝑧 ( 𝑥 𝐶 𝑧𝑧 𝐵 𝑦 ) ) )
6 vex 𝑦 ∈ V
7 vex 𝑥 ∈ V
8 6 7 brcnv ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑦 )
9 df-br ( 𝑦 𝐴 𝑥 ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐴 )
10 8 9 bitr3i ( 𝑥 𝐴 𝑦 ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐴 )
11 7 6 brco ( 𝑥 ( 𝐵𝐶 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐶 𝑧𝑧 𝐵 𝑦 ) )
12 6 7 brcnv ( 𝑦 ( 𝐵𝐶 ) 𝑥𝑥 ( 𝐵𝐶 ) 𝑦 )
13 df-br ( 𝑦 ( 𝐵𝐶 ) 𝑥 ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐵𝐶 ) )
14 12 13 bitr3i ( 𝑥 ( 𝐵𝐶 ) 𝑦 ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐵𝐶 ) )
15 11 14 bitr3i ( ∃ 𝑧 ( 𝑥 𝐶 𝑧𝑧 𝐵 𝑦 ) ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐵𝐶 ) )
16 10 15 imbi12i ( ( 𝑥 𝐴 𝑦 → ∃ 𝑧 ( 𝑥 𝐶 𝑧𝑧 𝐵 𝑦 ) ) ↔ ( ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐴 → ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐵𝐶 ) ) )
17 5 16 bitri ( ∃ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐶 𝑧𝑧 𝐵 𝑦 ) ) ↔ ( ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐴 → ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐵𝐶 ) ) )
18 17 2albii ( ∀ 𝑥𝑦𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐶 𝑧𝑧 𝐵 𝑦 ) ) ↔ ∀ 𝑥𝑦 ( ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝐴 → ⟨ 𝑦 , 𝑥 ⟩ ∈ ( 𝐵𝐶 ) ) )
19 1 4 18 3bitr4i ( 𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝑦𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐶 𝑧𝑧 𝐵 𝑦 ) ) )