Metamath Proof Explorer


Theorem refimssco

Description: Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020)

Ref Expression
Assertion refimssco ( ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ 𝐴 𝐴 ( 𝐴𝐴 ) )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑧 = 𝑥 → ( 𝑥 𝐴 𝑧𝑥 𝐴 𝑥 ) )
2 breq1 ( 𝑧 = 𝑥 → ( 𝑧 𝐴 𝑦𝑥 𝐴 𝑦 ) )
3 1 2 anbi12d ( 𝑧 = 𝑥 → ( ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) ↔ ( 𝑥 𝐴 𝑥𝑥 𝐴 𝑦 ) ) )
4 3 biimprd ( 𝑧 = 𝑥 → ( ( 𝑥 𝐴 𝑥𝑥 𝐴 𝑦 ) → ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) ) )
5 4 spimevw ( ( 𝑥 𝐴 𝑥𝑥 𝐴 𝑦 ) → ∃ 𝑧 ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) )
6 5 ex ( 𝑥 𝐴 𝑥 → ( 𝑥 𝐴 𝑦 → ∃ 𝑧 ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) ) )
7 6 adantr ( ( 𝑥 𝐴 𝑥𝑦 𝐴 𝑦 ) → ( 𝑥 𝐴 𝑦 → ∃ 𝑧 ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) ) )
8 7 com12 ( 𝑥 𝐴 𝑦 → ( ( 𝑥 𝐴 𝑥𝑦 𝐴 𝑦 ) → ∃ 𝑧 ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) ) )
9 8 a2i ( ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑥𝑦 𝐴 𝑦 ) ) → ( 𝑥 𝐴 𝑦 → ∃ 𝑧 ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) ) )
10 19.37v ( ∃ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) ) ↔ ( 𝑥 𝐴 𝑦 → ∃ 𝑧 ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) ) )
11 9 10 sylibr ( ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑥𝑦 𝐴 𝑦 ) ) → ∃ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) ) )
12 11 2alimi ( ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑥𝑦 𝐴 𝑦 ) ) → ∀ 𝑥𝑦𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) ) )
13 reflexg ( ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ 𝐴 ↔ ∀ 𝑥𝑦 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑥𝑦 𝐴 𝑦 ) ) )
14 cnvssco ( 𝐴 ( 𝐴𝐴 ) ↔ ∀ 𝑥𝑦𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑧𝑧 𝐴 𝑦 ) ) )
15 12 13 14 3imtr4i ( ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ 𝐴 𝐴 ( 𝐴𝐴 ) )