Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑥 𝐴 𝑧 ↔ 𝑥 𝐴 𝑥 ) ) |
2 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐴 𝑦 ↔ 𝑥 𝐴 𝑦 ) ) |
3 |
1 2
|
anbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑥 𝐴 𝑥 ∧ 𝑥 𝐴 𝑦 ) ) ) |
4 |
3
|
biimprd |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑥 𝐴 𝑥 ∧ 𝑥 𝐴 𝑦 ) → ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
5 |
4
|
spimevw |
⊢ ( ( 𝑥 𝐴 𝑥 ∧ 𝑥 𝐴 𝑦 ) → ∃ 𝑧 ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
6 |
5
|
ex |
⊢ ( 𝑥 𝐴 𝑥 → ( 𝑥 𝐴 𝑦 → ∃ 𝑧 ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑥 𝐴 𝑥 ∧ 𝑦 𝐴 𝑦 ) → ( 𝑥 𝐴 𝑦 → ∃ 𝑧 ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
8 |
7
|
com12 |
⊢ ( 𝑥 𝐴 𝑦 → ( ( 𝑥 𝐴 𝑥 ∧ 𝑦 𝐴 𝑦 ) → ∃ 𝑧 ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
9 |
8
|
a2i |
⊢ ( ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑥 ∧ 𝑦 𝐴 𝑦 ) ) → ( 𝑥 𝐴 𝑦 → ∃ 𝑧 ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
10 |
|
19.37v |
⊢ ( ∃ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ↔ ( 𝑥 𝐴 𝑦 → ∃ 𝑧 ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑥 ∧ 𝑦 𝐴 𝑦 ) ) → ∃ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
12 |
11
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑥 ∧ 𝑦 𝐴 𝑦 ) ) → ∀ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
13 |
|
reflexg |
⊢ ( ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑥 ∧ 𝑦 𝐴 𝑦 ) ) ) |
14 |
|
cnvssco |
⊢ ( ◡ 𝐴 ⊆ ◡ ( 𝐴 ∘ 𝐴 ) ↔ ∀ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 𝐴 𝑦 → ( 𝑥 𝐴 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
15 |
12 13 14
|
3imtr4i |
⊢ ( ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ 𝐴 → ◡ 𝐴 ⊆ ◡ ( 𝐴 ∘ 𝐴 ) ) |