| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑥 𝐴 𝑧  ↔  𝑥 𝐴 𝑥 ) ) | 
						
							| 2 |  | breq1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧 𝐴 𝑦  ↔  𝑥 𝐴 𝑦 ) ) | 
						
							| 3 | 1 2 | anbi12d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  ( 𝑥 𝐴 𝑥  ∧  𝑥 𝐴 𝑦 ) ) ) | 
						
							| 4 | 3 | biimprd | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑥 𝐴 𝑥  ∧  𝑥 𝐴 𝑦 )  →  ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 ) ) ) | 
						
							| 5 | 4 | spimevw | ⊢ ( ( 𝑥 𝐴 𝑥  ∧  𝑥 𝐴 𝑦 )  →  ∃ 𝑧 ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 ) ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝑥 𝐴 𝑥  →  ( 𝑥 𝐴 𝑦  →  ∃ 𝑧 ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑥 𝐴 𝑥  ∧  𝑦 𝐴 𝑦 )  →  ( 𝑥 𝐴 𝑦  →  ∃ 𝑧 ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 ) ) ) | 
						
							| 8 | 7 | com12 | ⊢ ( 𝑥 𝐴 𝑦  →  ( ( 𝑥 𝐴 𝑥  ∧  𝑦 𝐴 𝑦 )  →  ∃ 𝑧 ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 ) ) ) | 
						
							| 9 | 8 | a2i | ⊢ ( ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐴 𝑥  ∧  𝑦 𝐴 𝑦 ) )  →  ( 𝑥 𝐴 𝑦  →  ∃ 𝑧 ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 ) ) ) | 
						
							| 10 |  | 19.37v | ⊢ ( ∃ 𝑧 ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 ) )  ↔  ( 𝑥 𝐴 𝑦  →  ∃ 𝑧 ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 ) ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐴 𝑥  ∧  𝑦 𝐴 𝑦 ) )  →  ∃ 𝑧 ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 ) ) ) | 
						
							| 12 | 11 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐴 𝑥  ∧  𝑦 𝐴 𝑦 ) )  →  ∀ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 ) ) ) | 
						
							| 13 |  | reflexg | ⊢ ( (  I   ↾  ( dom  𝐴  ∪  ran  𝐴 ) )  ⊆  𝐴  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐴 𝑥  ∧  𝑦 𝐴 𝑦 ) ) ) | 
						
							| 14 |  | cnvssco | ⊢ ( ◡ 𝐴  ⊆  ◡ ( 𝐴  ∘  𝐴 )  ↔  ∀ 𝑥 ∀ 𝑦 ∃ 𝑧 ( 𝑥 𝐴 𝑦  →  ( 𝑥 𝐴 𝑧  ∧  𝑧 𝐴 𝑦 ) ) ) | 
						
							| 15 | 12 13 14 | 3imtr4i | ⊢ ( (  I   ↾  ( dom  𝐴  ∪  ran  𝐴 ) )  ⊆  𝐴  →  ◡ 𝐴  ⊆  ◡ ( 𝐴  ∘  𝐴 ) ) |