Metamath Proof Explorer


Theorem refimssco

Description: Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020)

Ref Expression
Assertion refimssco
|- ( ( _I |` ( dom A u. ran A ) ) C_ A -> `' A C_ `' ( A o. A ) )

Proof

Step Hyp Ref Expression
1 breq2
 |-  ( z = x -> ( x A z <-> x A x ) )
2 breq1
 |-  ( z = x -> ( z A y <-> x A y ) )
3 1 2 anbi12d
 |-  ( z = x -> ( ( x A z /\ z A y ) <-> ( x A x /\ x A y ) ) )
4 3 biimprd
 |-  ( z = x -> ( ( x A x /\ x A y ) -> ( x A z /\ z A y ) ) )
5 4 spimevw
 |-  ( ( x A x /\ x A y ) -> E. z ( x A z /\ z A y ) )
6 5 ex
 |-  ( x A x -> ( x A y -> E. z ( x A z /\ z A y ) ) )
7 6 adantr
 |-  ( ( x A x /\ y A y ) -> ( x A y -> E. z ( x A z /\ z A y ) ) )
8 7 com12
 |-  ( x A y -> ( ( x A x /\ y A y ) -> E. z ( x A z /\ z A y ) ) )
9 8 a2i
 |-  ( ( x A y -> ( x A x /\ y A y ) ) -> ( x A y -> E. z ( x A z /\ z A y ) ) )
10 19.37v
 |-  ( E. z ( x A y -> ( x A z /\ z A y ) ) <-> ( x A y -> E. z ( x A z /\ z A y ) ) )
11 9 10 sylibr
 |-  ( ( x A y -> ( x A x /\ y A y ) ) -> E. z ( x A y -> ( x A z /\ z A y ) ) )
12 11 2alimi
 |-  ( A. x A. y ( x A y -> ( x A x /\ y A y ) ) -> A. x A. y E. z ( x A y -> ( x A z /\ z A y ) ) )
13 reflexg
 |-  ( ( _I |` ( dom A u. ran A ) ) C_ A <-> A. x A. y ( x A y -> ( x A x /\ y A y ) ) )
14 cnvssco
 |-  ( `' A C_ `' ( A o. A ) <-> A. x A. y E. z ( x A y -> ( x A z /\ z A y ) ) )
15 12 13 14 3imtr4i
 |-  ( ( _I |` ( dom A u. ran A ) ) C_ A -> `' A C_ `' ( A o. A ) )