Description: Two ways of saying a relation is reflexive over its domain and range. (Contributed by RP, 4-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | reflexg | |- ( ( _I |` ( dom A u. ran A ) ) C_ A <-> A. x A. y ( x A y -> ( x A x /\ y A y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undmrnresiss | |- ( ( _I |` ( dom A u. ran A ) ) C_ A <-> A. x A. y ( x A y -> ( x A x /\ y A y ) ) ) |