Metamath Proof Explorer


Theorem concom

Description: A cone to a diagram commutes with the diagram. (Contributed by Zhi Wang, 13-Nov-2025)

Ref Expression
Hypotheses islmd.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
islmd.a 𝐴 = ( Base ‘ 𝐶 )
islmd.n 𝑁 = ( 𝐷 Nat 𝐶 )
islmd.b 𝐵 = ( Base ‘ 𝐷 )
concl.k 𝐾 = ( ( 1st𝐿 ) ‘ 𝑋 )
concl.x ( 𝜑𝑋𝐴 )
concl.y ( 𝜑𝑌𝐵 )
concom.z ( 𝜑𝑍𝐵 )
concom.m ( 𝜑𝑀 ∈ ( 𝑌 𝐽 𝑍 ) )
concom.j 𝐽 = ( Hom ‘ 𝐷 )
concom.o · = ( comp ‘ 𝐶 )
concom.r ( 𝜑𝑅 ∈ ( 𝐾 𝑁 𝐹 ) )
Assertion concom ( 𝜑 → ( 𝑅𝑍 ) = ( ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝑀 ) ( ⟨ 𝑋 , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ · ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( 𝑅𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 islmd.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
2 islmd.a 𝐴 = ( Base ‘ 𝐶 )
3 islmd.n 𝑁 = ( 𝐷 Nat 𝐶 )
4 islmd.b 𝐵 = ( Base ‘ 𝐷 )
5 concl.k 𝐾 = ( ( 1st𝐿 ) ‘ 𝑋 )
6 concl.x ( 𝜑𝑋𝐴 )
7 concl.y ( 𝜑𝑌𝐵 )
8 concom.z ( 𝜑𝑍𝐵 )
9 concom.m ( 𝜑𝑀 ∈ ( 𝑌 𝐽 𝑍 ) )
10 concom.j 𝐽 = ( Hom ‘ 𝐷 )
11 concom.o · = ( comp ‘ 𝐶 )
12 concom.r ( 𝜑𝑅 ∈ ( 𝐾 𝑁 𝐹 ) )
13 3 12 nat1st2nd ( 𝜑𝑅 ∈ ( ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ 𝑁 ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) )
14 3 13 4 10 11 7 8 9 nati ( 𝜑 → ( ( 𝑅𝑍 ) ( ⟨ ( ( 1st𝐾 ) ‘ 𝑌 ) , ( ( 1st𝐾 ) ‘ 𝑍 ) ⟩ · ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐾 ) 𝑍 ) ‘ 𝑀 ) ) = ( ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝑀 ) ( ⟨ ( ( 1st𝐾 ) ‘ 𝑌 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ · ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( 𝑅𝑌 ) ) )
15 3 13 natrcl3 ( 𝜑 → ( 1st𝐹 ) ( 𝐷 Func 𝐶 ) ( 2nd𝐹 ) )
16 15 funcrcl3 ( 𝜑𝐶 ∈ Cat )
17 15 funcrcl2 ( 𝜑𝐷 ∈ Cat )
18 1 16 17 2 6 5 4 7 diag11 ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑌 ) = 𝑋 )
19 1 16 17 2 6 5 4 8 diag11 ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑍 ) = 𝑋 )
20 18 19 opeq12d ( 𝜑 → ⟨ ( ( 1st𝐾 ) ‘ 𝑌 ) , ( ( 1st𝐾 ) ‘ 𝑍 ) ⟩ = ⟨ 𝑋 , 𝑋 ⟩ )
21 20 oveq1d ( 𝜑 → ( ⟨ ( ( 1st𝐾 ) ‘ 𝑌 ) , ( ( 1st𝐾 ) ‘ 𝑍 ) ⟩ · ( ( 1st𝐹 ) ‘ 𝑍 ) ) = ( ⟨ 𝑋 , 𝑋· ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
22 eqidd ( 𝜑 → ( 𝑅𝑍 ) = ( 𝑅𝑍 ) )
23 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
24 1 16 17 2 6 5 4 7 10 23 8 9 diag12 ( 𝜑 → ( ( 𝑌 ( 2nd𝐾 ) 𝑍 ) ‘ 𝑀 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )
25 21 22 24 oveq123d ( 𝜑 → ( ( 𝑅𝑍 ) ( ⟨ ( ( 1st𝐾 ) ‘ 𝑌 ) , ( ( 1st𝐾 ) ‘ 𝑍 ) ⟩ · ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐾 ) 𝑍 ) ‘ 𝑀 ) ) = ( ( 𝑅𝑍 ) ( ⟨ 𝑋 , 𝑋· ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) )
26 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
27 4 2 15 funcf1 ( 𝜑 → ( 1st𝐹 ) : 𝐵𝐴 )
28 27 8 ffvelcdmd ( 𝜑 → ( ( 1st𝐹 ) ‘ 𝑍 ) ∈ 𝐴 )
29 1 2 3 4 5 6 8 26 12 concl ( 𝜑 → ( 𝑅𝑍 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
30 2 26 23 16 6 11 28 29 catrid ( 𝜑 → ( ( 𝑅𝑍 ) ( ⟨ 𝑋 , 𝑋· ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = ( 𝑅𝑍 ) )
31 25 30 eqtrd ( 𝜑 → ( ( 𝑅𝑍 ) ( ⟨ ( ( 1st𝐾 ) ‘ 𝑌 ) , ( ( 1st𝐾 ) ‘ 𝑍 ) ⟩ · ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐾 ) 𝑍 ) ‘ 𝑀 ) ) = ( 𝑅𝑍 ) )
32 18 opeq1d ( 𝜑 → ⟨ ( ( 1st𝐾 ) ‘ 𝑌 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ = ⟨ 𝑋 , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ )
33 32 oveq1d ( 𝜑 → ( ⟨ ( ( 1st𝐾 ) ‘ 𝑌 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ · ( ( 1st𝐹 ) ‘ 𝑍 ) ) = ( ⟨ 𝑋 , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ · ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
34 33 oveqd ( 𝜑 → ( ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝑀 ) ( ⟨ ( ( 1st𝐾 ) ‘ 𝑌 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ · ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( 𝑅𝑌 ) ) = ( ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝑀 ) ( ⟨ 𝑋 , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ · ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( 𝑅𝑌 ) ) )
35 14 31 34 3eqtr3d ( 𝜑 → ( 𝑅𝑍 ) = ( ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝑀 ) ( ⟨ 𝑋 , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ · ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( 𝑅𝑌 ) ) )