Description: Value of the named cosh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-cosh . See coshval for a theorem to convert this further. (Contributed by David A. Wheeler, 10-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | coshval-named | ⊢ ( 𝐴 ∈ ℂ → ( cosh ‘ 𝐴 ) = ( cos ‘ ( i · 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( i · 𝑥 ) = ( i · 𝐴 ) ) | |
2 | 1 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( cos ‘ ( i · 𝑥 ) ) = ( cos ‘ ( i · 𝐴 ) ) ) |
3 | df-cosh | ⊢ cosh = ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( i · 𝑥 ) ) ) | |
4 | fvex | ⊢ ( cos ‘ ( i · 𝐴 ) ) ∈ V | |
5 | 2 3 4 | fvmpt | ⊢ ( 𝐴 ∈ ℂ → ( cosh ‘ 𝐴 ) = ( cos ‘ ( i · 𝐴 ) ) ) |