Metamath Proof Explorer


Theorem coshval-named

Description: Value of the named cosh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-cosh . See coshval for a theorem to convert this further. (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion coshval-named ( 𝐴 ∈ ℂ → ( cosh ‘ 𝐴 ) = ( cos ‘ ( i · 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑥 = 𝐴 → ( i · 𝑥 ) = ( i · 𝐴 ) )
2 1 fveq2d ( 𝑥 = 𝐴 → ( cos ‘ ( i · 𝑥 ) ) = ( cos ‘ ( i · 𝐴 ) ) )
3 df-cosh cosh = ( 𝑥 ∈ ℂ ↦ ( cos ‘ ( i · 𝑥 ) ) )
4 fvex ( cos ‘ ( i · 𝐴 ) ) ∈ V
5 2 3 4 fvmpt ( 𝐴 ∈ ℂ → ( cosh ‘ 𝐴 ) = ( cos ‘ ( i · 𝐴 ) ) )