Metamath Proof Explorer


Theorem tanhval-named

Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion tanhval-named ( 𝐴 ∈ ( cosh “ ( ℂ ∖ { 0 } ) ) → ( tanh ‘ 𝐴 ) = ( ( tan ‘ ( i · 𝐴 ) ) / i ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑥 = 𝐴 → ( i · 𝑥 ) = ( i · 𝐴 ) )
2 1 fveq2d ( 𝑥 = 𝐴 → ( tan ‘ ( i · 𝑥 ) ) = ( tan ‘ ( i · 𝐴 ) ) )
3 2 oveq1d ( 𝑥 = 𝐴 → ( ( tan ‘ ( i · 𝑥 ) ) / i ) = ( ( tan ‘ ( i · 𝐴 ) ) / i ) )
4 df-tanh tanh = ( 𝑥 ∈ ( cosh “ ( ℂ ∖ { 0 } ) ) ↦ ( ( tan ‘ ( i · 𝑥 ) ) / i ) )
5 ovex ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ V
6 3 4 5 fvmpt ( 𝐴 ∈ ( cosh “ ( ℂ ∖ { 0 } ) ) → ( tanh ‘ 𝐴 ) = ( ( tan ‘ ( i · 𝐴 ) ) / i ) )